

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

SCHRIFTENREIHE REAKTORSICHERHEIT UND STRAHLENSCHUTZ

UNTERSCHIEDE BEI DER ABLAGERUNG VON RADIONUKLIDEN AUF VERSCHIEDENE BLATTGEMÜSEARTEN

BMU - 2004-635

WIR STEUERN UM AUF ERNEUERBARE ENERGIEN.

BMU - 2004-635

Unterschiede bei der Ablagerung von Radionukliden auf verschiedene Blattgemüsearten

Tschiersch, Jochen Shinonaga, Taeko Heuberger^{*}, Heidi Bunzl, Kurt Pliml, Alena Dietl, Folker Keusch, Monika

* TU München Weihenstephan, Lehrstuhl für Gemüsebau, 85350 Freising

IMPRESSUM

Dieser Band enthält einen Abschlussbericht über ein vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) gefördertes Vorhaben. Verantwortlich für den Inhalt sind allein die Autoren. Das BMU übernimmt keine Gewähr für die Richtigkeit, die Genauigkeit und Vollständigkeit der Angaben sowie die Beachtung privater Rechte Dritter. Der Eigentümer behält sich alle Rechte an der weiteren Nutzung oder Vervielfältigung des Berichts vor.

Der Bericht wurde durch das GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Institut für Strahlenschutz, Arbeitsgruppe Radioökologie, Neuherberg, erstellt.

Der Bericht gibt die Auffassung und Meinung des Auftragnehmers wieder und muss nicht mit der des BMU übereinstimmen.

Herausgeber:

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit Arbeitsgruppe RS I 1 Postfach 12 06 29 53048 Bonn

ISSN 1612-6386 Erscheinungsjahr: 2004

<u>Kurzfassung</u>

In vergleichenden Experimenten in einer Depositionskammer wurde die trockene Ablagerung von elementarem, gasförmigem Radiojod und partikelgebundenem Radiocäsium auf erntereife Blattgemüsearten untersucht. Die gleichzeitige Exposition von Endivie, Kopfsalat, Pflücksalat und Spinat (Frühlingsblattgemüse) bzw. Grünkohl, Weißkohl und Spinat (Sommerblattgemüse) fand unter homogenen Bedingungen mit Kontrolle der relevanten Parameter (¹³¹I₂-Anteil, Partikelmedian, Stomataöffnung, Luftfeuchte und -temperatur) statt. Das Probenkollektiv war für jede Gemüsespezies so umfangreich gewählt, dass auch bei der erwarteten Streuung der Messergebnisse eine statistisch gesicherte Analyse durchgeführt werden konnte. Bei der (gewichtsbezogenen) Jodablagerung wurden für alle Frühlingsarten signifikante Unterschiede festgestellt: Auf Blattspinat wurde grob 3mal mehr¹³¹I abgelagert als auf Pflücksalat, 4mal mehr als auf Endivie und 9mal mehr als auf Kopfsalat. Bei Cäsium konnte nicht zwischen der Deposition auf Spinat und Pflücksalat unterschieden werden, auf beide Arten wurde signifikant grob doppelt so viel ¹³⁴Cs wie auf Endivie und 3mal so viel wie auf Kopfsalat abgelagert. Bei den Sommerarten wurden für alle Spezies signifikante Unterschiede gemessen. In beiden Experimenten ergab sich, dass 131 auf Spinat am meisten deponiert wurde, grob 3mal bzw. 6mal mehr als auf Grünkohl und 35mal bzw.100mal mehr als auf Weißkohl. Cäsium wurde jedoch am meisten auf Grünkohl deponiert, gut doppelt so viel wie auf Spinat und 35mal bzw. 80mal so viel wie auf Weißkohl. Bei allen Experimenten konnte die Depositionsgeschwindigkeit abgeschätzt werden: Die Ablagerung von ¹³¹I₂ war im Mittel etwa eine Größenordnung effektiver als die von partikulärem ¹³⁴Cs, wobei allerdings die Joddeposition bei Spinat besonders hoch ausfiel. Die Verdopplung des Partikeldurchmessers bei sonst gleichem Experimentdesign bewirkte nur eine geringe Erhöhung der Deposition. Durch Waschen des Gemüses konnte die Kontamination mit den Radionukliden reduziert werden, bei Radiojod zwar nur um etwa 10%, beim partikulärem ¹³⁴Cs jedoch um etwa 45%.

Abstract

The dry deposition of gaseous elemental radio-iodine and particulate radio-caesium on mature leafy vegetable was studied in chamber experiments. The simultaneous exposition of endive, head lettuce, red oak leaf lettuce and spinach (spring leafy vegetable) rsp. curly kale, white cabbage and spinach (summer leafy vegetable) was performed under homogeneous and controlled conditions. The sample collective of each species was such large that for the expected variation of the results a statistically firm analysis was possible. Significant differences were observed for the ¹³¹I deposition on spring vegetable: the deposition on spinach was roughly 3times that on leaf lettuce, 4times that on endive and 9times that on head lettuce. For ¹³⁴Cs, there was no significant difference between spinach and leaf lettuce, about twice the amount was deposited on both species as on endive and 3times as on head lettuce. All summer vegetables showed differences in deposition. For lodine, the deposition on spinach was roughly 3times (6times) that on curly kale and 35times (100times) that on white cabbage in the 2 experiments. For Caesium, the deposition to curly kale was highest, about twice that on spinach and 35times (80times) that on white cabbage. The deposition velocity could be estimated, in average it was about 8times higher for ¹³¹I than for ¹³⁴Cs. The influence of the particle size on the deposition velocity was small in the considered size range. Washing could reduce the contamination by about 10% for ¹³¹I and 45% for ¹³⁴Cs.

Inhaltsverzeichnis

1.	Einleitung	7
1.1	Aufgabenstellung	7
1.2	Stand des Fachwissens	8
1.3	Planung und Ablauf des Vorhabens	11
1.4	Zusammenarbeit mit anderen Stellen	12
2.	Versuchsdurchführung trockene Deposition auf Blattgemüse	13
2.1	Aufbau der Depositionskammer	13
2.1.1	Die Anschlüsse für Tracerzugabe, Probenahme und Messfühler	15
2.1.2	Das Ventilationssystem	16
2.1.3	Das Beleuchtungssystem	19
2.1.4	Anbau zur Probenvorbereitung	19
2.2	Kenngrößen der Kulturpflanzen	21
2.2.1	Aufzucht der Kulturpflanzen	22
2.2.2	Bestimmung der Blattfläche	25
2.2.3	Messung der stomatären Blattöffnung	26
2.2.4	Weitere Pflanzenparameter	29
2.2.5	Anordnung der Pflanzen in der Depositionskammer	30
2.3	Exposition mit gasförmigem, elementarem ¹³¹ I	33
2.3.1	Erzeugung von elementarem ¹³¹ I ₂	33
2.3.2	Kenndaten des emittierten Radiojods in der Depositionskammer	34

2.4	Exposition mit partikelgebundenem ¹³⁴ Cs	.41
2.4.1	Erzeugung von ¹³⁴ Cs markierten Aerosolpartikeln	.41
2.4.2	Dispersion der markierten Partikel in die Depositionskammer	.43
2.4.3	Kenndaten der emittierten Partikel in der Depositionskammer	.44
2.4.4	Konzentrationsverlauf der ¹³⁴ Cs Aktivität während der Pflanzenexposition	.49
2.5	Analytische Methoden	53
2.6	Versuchsablauf	55
2.7	Homogenitätstest	56
3.	Ergebnisse der Ablagerungsversuche	. 58
3.1	Auf dem Blattgemüse deponierte Radionuklide ¹³¹ I und ¹³⁴ Cs	.58
3.2	Statistische Auswertung der Versuchsergebnisse	65
3.2.1	Auswertung des Homogenitätsversuchs	.68
3.2.2	Auswertung der Frühlingsgemüseversuche	.71
3.2.3	Auswertung der Sommergemüseversuche	76
3.2.4	Auswertung der Waschversuche	81
3.3	Diskussion der Ablagerungsversuche	85
4.	Literaturverzeichnis	. 90
5.	Anhang	. 95

1 Einleitung

1.1 Aufgabenstellung

Die Höhe der trockenen Ablagerung von gasförmigen und aerosolgebundenen Radionukliden auf Blattgemüse ist wegen der unterschiedlichen Wuchsform, Oberflächenbeschaffenheit und Blattaufnahme der verschiedenen Spezies mit einer hohen Unsicherheit behaftet. Bisher existieren keine vergleichenden Messdaten für die Ablagerung auf verschiedenen Blattgemüsearten. Deshalb sollen in Kammerexperimenten für verschiedene nutzungsrelevante Blattgemüsearten vergleichende Ablagerungsversuche durchgeführt und experimentelle Daten zur trockenen Ablagerung unter kontrollierten Bedingungen gewonnen werden.

Die Experimente zur trockenen Ablagerung sollen mit aerosolgebundenem Radiocäsium und gasförmigem elementarem Radiojod durchgeführt werden. Die Partikelgrößenverteilung des emitierten Cäsiumaerosols soll erwarteten Verteilungen nach Radionuklidfreisetzungen in der Atmosphäre entsprechen. Für Freisetzungen in größeren Entfernungen kann ein Größenspektrum wie es in Deutschland nach dem Tschernobyl Unfall gemessen wurde (Tschiersch & Georgi, 1987) angenommen werden, für kürzere Quellentfernungen soll ein Aerosol mit kleinerem Aktivitätsgrößenmedian (AMAD) benutzt werden. Die Depositionsgeschwindigkeit von elementarem gasförmigem Jod ist etwa um einen Faktor 20 höher als bei partikelgebundenem Jod und einen Faktor 200 höher als bei organischem Jod (Whitehead, 1984, Heinemann & Vogt, 1980), weshalb die Deposition von elementarem Radiojod besonders wichtig ist. Die Versuchsbedingungen in der Kammer sind deshalb so zu gestalten, dass eine Anlagerung an Partikel vermieden und eine Umsetzung in organisches Jod gering gehalten wird.

Frühlings- und Sommerblattgemüsearten werden mit den beschriebenen Radionukliden beaufschlagt. Die Exposition der zu untersuchenden Gemüsearten soll bei erntereifem Gemüse erfolgen. Je Gemüsespezies wird ein Kollektiv von Pflanzen untersucht, das groß genug ist, um die individuelle Variabilität statistisch zu erfassen. Die Ernte wird einen Tag nach der Kontamination durchgeführt. Die Radionuklidkonzentration wird sowohl unmittelbar nach der Ernte an unbehandelten Pflanzen gemessen und als auch an küchenfertigen Pflanzen nach dem Entfernen ungenießbarer Teile und Waschen. Die Ergebnisse sollen miteinander verglichen und statistisch ausgewertet werden. In radioökologischen Modellen wird der Blattflächenindex zur Charakterisierung der Pflanzen und ihres Entwicklungsstatus bei der trockenen Deposition benutzt (Müller & Pröhl, 1993). Um die Anbindung der Messergebnisses dieses Projektes an solche Modelle zu gewährleisten, soll in jedem Versuch der Blattflächenindex von mindestens einer Referenzspezies bestimmt werden.

1.2 Stand des Fachwissens

Im Freiland, wo sich eine Grenzschicht über einem homogenen Bewuchs aufbaut, wenn Wind darüber streicht, ist als Maß für die Ablagerung die sogenannte Depositionsgeschwindigkeit v_g gebräuchlich. Sie ist definiert als der nach unten gerichtete Fluß F von Spurenstoffen auf eine Einheitsfläche dividiert durch die Spurenstoffkonzentration c in einer Referenzhöhe:

$$v_g = F / c$$
 [m / s] (1.1).

Ihr liegt das Konzept von additiven Widerständen zu Grunde, die Partikel und Gase überwinden müssen, bis sie vom Bewuchs auf der Einheitsfläche schließlich aufgenommen werden (siehe z.B. Barry & Chamberlain, 1963, Thom, 1975, Peters & Eiden, 1992, Wesely & Hicks, 2000). Kurz zusammengefasst ist die Ablagerung abhängig von atmosphärisch dominierten Widerständen (wie aerodynamischer Widerstand r_a), Oberflächen dominierten Widerständen (wie Rauhigkeits- bzw. Grenzschichtwiderstand r_s) und Bewuchs dominierten Widerständen (wie Transferwiderstand r_t). Die gesamte Depositionsgeschwindigkeit v_g ergibt sich aus den Teilwiderständen nach

$$v_{q} = (r_{a} + r_{s} + r_{t})^{-1}$$
 (1.2).

Der aerodynamischer Widerstand r_a ist eine Funktion von Windgeschwindigkeit, atmosphärischer Stabilität und Oberflächenrauhigkeit. Er ist unabhängig von der Substanz, die abgelagert wird. Der Grenzschichtwiderstand r_s beschreibt für die Gase und kleinen Partikel die Diffusion durch die viskose Grenzschicht, für größere Partikel wird zusätzlich die Sedimentation und Impaktion berücksichtigt. Der Transferwiderstand r_t schließlich beschreibt die Effizienz mit der Moleküle oder Partikel an der Oberfläche festgehalten werden und hängt ab von deren chemischphysikalischer Form und biologischen Faktoren wie dem stomatären Blattwiderstand. In der Literatur sind eine Vielzahl von Experimenten zur trockenen Deposition zu finden. Sie betreffen vor allem die Ablagerung auf glatte Oberflächen, Gras und Bäume. Zusammenfassungen der Ergebnisse finden sich in z.B. in McMahon and Denison (1979), Nicholson (1988) und Oberschachtsiek et al. (1993). Bei der Partikeldeposition wird eine Abhängigkeit von der Partikelgröße festgestellt mit einem Minimum der Ablagerung im Größenbereich 0,1 – 1 µm aerodynamischer Durchmesser. Diese Minimum wird von Fowler (1984) hauptsächlich auf den Grenzschichtwiderstand zurückgeführt, der kleiner wird in Richtung feiner Partikel (Diffusion) und in Richtung grober Partikel (Impaktion). In der Zusammenschau der Messergebnisse wird eine hohe Variabilität der Depositionsgeschwindigkeit über mehr als zwei Größenordnungen deutlich. In einer Übersicht über jüngere Messergebnisse kommt Underwood (2001) für Weidegras und niederen Bewuchs bei einem Partikeldurchmesser von 1 µm zu einem Bereich für die Depositionsgeschwindigkeit, der zwischen 7× 10⁻⁴ m/s ("best judgement") und 3 × 10⁻³ m/s ("conservative") liegt (Schubspannungsgeschwindigkeit u- = 0,2 m/s und ra × u- = 10).

Für Blattgemüse liegen wenig Messdaten vor. Watterson & Nicholson (1996) haben in Freilandversuchen die trockene Ablagerung auf Kopfsalat im Partikeldurchmesserbereich 4-22 µm studiert. Dabei können sie eine Zunahme der Deposition mit der Partikelgröße signifikant nachweisen. Die Depositionsgeschwindigkeit bei den 4 µm Partikeln liegt bei (1,7 ± 0,5) × 10⁻³ m/s und ist damit vergleichbar mit ihren Daten für die Ablagerung auf Weizen (v_g = (1,3 ± 1,2) × 10⁻³ m/s). Wedding et al. (1975) haben in ihrer Untersuchung mit verschiedenen Pflanzenblättern festgestellt, dass die Deposition auf raue, fein behaarte Blätter etwa 10mal größer ist als auf glatte, wächserne Blätter (bei 7 µm Partikeldurchmesser).

Ähnlich wie bei der Partikelablagerung ist die Bandbreite der experimentellen Ergebnisse bei der trockenen Deposition von Spurengasen sehr groß. Fowler (1984) führt diese Variabilität hauptsächlich auf den unterschiedlichen Transferwiderstand zurück, während die luftseitigen Widerstände die geringeren Beschränkungen bei der Gasdeposition ausmachen. Für die meiste kurze Vegetation trägt rt über 70% zum Gesamtwiderstand bei, wobei die Stomata die Hauptsenken sind (Fowler & Unsworth, 1979). Der Transferwiderstand selbst hängt von Art und Zustand der Pflanzen ab, also z.B. ob die Stomata geöffnet sind oder nicht, ob die Kutikula behaart oder wächsern ist oder nicht, ob die Blätter gealtert sind oder frisch

getrieben, aber auch von dem betrachteten Gas, wie es in den Pflanzenflüssigkeiten gelöst und in den Pflanzen chemisch umgesetzt wird.

Radiojod tritt wie stabiles Jod in der Atmosphäre in verschiedenen Formen auf und unterliegt dort unter dem Einfluß von solarer Strahlung, reaktiven Verbindungen (wie z.B. Ozon, NO_x, etc.) und Partikeln fortwährender Transformationen (Whitehead, 1984). Es kommt einmal gebunden an Aerosolpartikel vor oder aber gasförmig in den chemischen Formen elementares Jod (¹³¹l₂) und organisches Jod (Methyljodid, CH₃¹³¹I), in geringerem Maße als hypojodige Säure (H¹³¹IO) und als Jodwasserstoff (H¹³¹I). Bei der trockenen Deposition von Radiojod sind je nach chemischer Form unterschiedliche Depositionsgeschwindigkeiten gefunden worden. Am schnellsten wird das gasförmige, elementare I₂ deponiert, mehr als 2 Größenordnungen langsamer ist die Deposition von organischem Jod, partikelgebundenes Jod wird um einen Faktor 20 langsamer auf Gras abgelagert (Heinemann & Vogt, 1980). Nakamura & Ohmomo (1980a,b) haben bei der Deposition auf Spinatblätter ebenfalls eine etwa 2 Größenordnungen höhere v_g von elementarem Jod (verglichen mit organischem Jod) gefunden. Auf Reispflanzen haben Muramatsu et al. (1996) für organisches Jod 1/300 der va für elementares Jod gemessen. Bei Tradescantia ist die Jodablagerung für elementares Jod 30-40mal größer als für organisches (Nakamura & Ohmoho, 1984). Die Depositionsgeschwindigkeit für HOI auf Gras liegt zwischen organischem und elementarem Jod und beträgt etwa die Hälfte der für partikuläres Jod (Voillegué & Keller, 1981).

Bereits Barry & Chamberlain (1963) haben eine starke Abhängigkeit der Joddeposition von der Luftfeuchte festgestellt. Bei trockener Luft wird eine Reduktion der Deposition um einen Faktor 10 gegenüber feuchter Luft gemessen. Heinemann & Vogt (1980) haben ihre Depositionsexperimente erfolgreich mit einer linearen Abhängigkeit von v_g von der relativen Luftfeuchte beschreiben können. Die Ablagerung auf feuchtes Gras ist bei ihnen etwa doppelt so hoch wie auf trockenes Gras.

Den Einfluss der stomatären Blattöffnung auf die Deposition haben Barry & Chamberlain (1963) und später im Detail Adams & Voillequé (1970) studiert. Sie finden eine lineare Abhängigkeit des Gastransfers von der Fläche der stomatären Blattöffnungen. In vergleichenden Ablagerungsversuchen finden Heinemann & Vogt (1980) eine doppelt so hohe Deposition auf Klee als auf Gras. Hungate et al. (1963)

haben gleichzeitig Rettich, Geranien, Kopfsalat und Peperomia exponiert, wobei die Blattkontamination innerhalb eines Faktors 2 gleich ist (Maximum: Peperomia, Minimum: Rettich).

In seiner Übersicht über jüngere Depositionsmessungen auf Weidegras und niederen Bewuchs kommt Underwood (2001) für elementares Jod zu einem Bereich für die Depositionsgeschwindigkeit, der zwischen 7 × 10⁻³ m/s ("best judgement", rel. Luftfeuchte 50%) und 1 × 10⁻² m/s ("conservative", r_t = 0) liegt (jeweils Schubspannungsgeschwindigkeit u* = 0,2 m/s und r_a × u* = 12). Auf Spinat haben Nakamura & Ohmomo (1980b) v_g = 1,5 × 10⁻³ m/s gemessen; Lee et al. (2003) bestimmen v_g = (4-10) × 10⁻³ m/s für Chinakohl.

1.3 Planung und Ablauf des Vorhabens

Entsprechend der Planung des Vorhabens können drei Phasen unterschieden werden. Zuerst muss die Depositionskammer zur Exposition des Blattgemüses mit dem gasförmigen Radionuklide ¹³¹I und dem partikelgebundenem Radionuklid ¹³⁴Cs konzipiert und aufgebaut werden. Dann müssen Verfahren entwickelt und angepasst werden, mit denen partikuläres ¹³⁴Cs und elementares, gasförmiges ¹³¹I₂ erzeugt und stabil in ihrer chemisch-physikalischen Form in die Kammer eingebracht werden. Zuletzt müssen die ausgewählten Blattgemüsepflanzen zeitgleich in erntereifen Zustand in die Kammer eingebracht werden und die Versuche durchgeführt werden.

Wegen der Vorgabe radioaktive Tracer zu benutzen, sind beim Bau der Kammer besondere Ansprüche an Dichtigkeit und Filtereigenschaften zu berücksichtigen. Ferner macht der Anspruch, mit spaltöffnungsaktiven Pflanzen zu arbeiten (um die Atmung der Pflanzen zu gewährleisten), den Einbau zusätzlicher Beleuchtungskörper notwendig. Diese Nachrüstung stellt sich wegen der engen Platzverhältnisse als besonders beschwerlich heraus. Die Konstruktion der Kammer ist im Detail in Kapitel 2.1 beschrieben.

Während die Anpassung eines Verfahrens zur Herstellung von elementarem Jod ¹³¹I₂ ohne größere Schwierigkeiten gelingt (siehe Kapitel 2.3), bereitet die Entwicklung eines Verfahrens zur Fixierung von ¹³⁴Cs auf monodispersen Partikeln größere Mühe (siehe Kapitel 2.4). Letztlich sind diese experimentellen Schwierigkeiten der Grund für den verzögerten Beginn der Depositionsexperimente.

Dank der guten Zusammenarbeit mit dem Lehrstuhl für Gemüsebau der TU München Weihenstephan können die Gemüsepflanzen in meist optimalem, Licht angepassten und äußerlich sehr homogenen Zustand in die Kammer eingebracht werden und die nötigen Pflanzenparameter mit Spezialgeräten bestimmt werden. Die Eigenschaften der exponierten Pflanzen finden sich näher in Kapitel 2.2 beschrieben. Mit großem Arbeitseinsatz können die Expositionsversuche (je zwei für Frühlings- und für Sommergemüse und eine Homogenitätstest mit Filterpapieren) in einer Vegetationsperiode erfolgreich durchgeführt werden. Die Versuchsdurchführung ist in Kapitel 2.6 erläutert.

Entgegen der ursprünglichen Planung werden bei den Sommergemüsearten nur drei verschiedene Spezies in die Untersuchung einbezogen. Wegen der kleineren Bestandsdichte der Kohlarten können weniger Pflanzen als bei den Salatpflanzen der Frühlingsarten in die Depositionskammer eingebracht werden. Um aber trotzdem zu statistisch abgesicherten Ergebnissen zu kommen, wird auf eine Art ganz verzichtet. Diese Art (Wirsing) ist vom Wuchs ähnlich aber von der Anbaumenge weniger bedeutend wie eine Art (Weißkohl), die in der Untersuchung eingeschlossen ist. Die Versuchskonzeption zielt darauf ab, durch die gleichzeitige Exposition der verschiedenen Gemüsearten die Variabilitäten im Versuch für die vergleichenden Daten klein zu halten, um aber den verblieben Unsicherheiten gerecht zu werden, dürfen die Pflanzenkollektive einen gewissen Umfang nicht unterschreiten.

1.4 Zusammenarbeit mit anderen Stellen

Was die Aufzucht der Gemüsepflanzen und die Bestimmung der relevanten Pflanzenparameter angeht, wird eine intensive Zusammenarbeit mit dem Lehrstuhl für Gemüsebau der TU München Weihenstephan (Frau Dr. Heuberger) gepflegt. So wird dort fachkundig der Blattflächenindex von den Bezugspflanzen bestimmt und mit ausführlicher Einweisung ein Messgerät zur Bestimmung der stomatären Blattöffnung zur Verfügung gestellt. Die Erfahrung an den Expositionskammern der GSF (Institut für Bodenökologie, EUS, Dr. Payer, Dr. Seidlitz) kann für den Aufbau der Depositionskammer und des Beleuchtungssystems zu Rate gezogen werden. Die Abteilung Technischer Strahlenschutz der GSF (Dr. Kretner) leistet Unterstützung bei dem Aufbau der Kammer (besonders bei der Beschaffung der nötigen Umgangsgenehmigung) und bei der ordnungsgemäßen Entsorgung der kontaminierten Gemüsepflanzen und sonstigen Abfälle.

2 Versuchsdurchführung trockene Deposition auf Blattgemüse

Die trockene Deposition von Radiocäsium und Radiojod auf Blattgemüsepflanzen soll in Laborversuchen simuliert werden. Die Verwendung der radioaktiven Tracer macht die Benutzung einer geschlossen Depositionskammer notwendig, die eigens für die Experimente aufgebaut wird. Alle relevanten Parameter müssen während der Versuchsdauer erfasst und in einem engen Schwankungsbereich gehalten werden, um definierte Bedingungen bei der Pflanzenexposition zu erreichen. Alle exponierten Gemüsepflanzen befinden sich in ausgewachsenem, erntereifen Zustand. Die Expositionsbedingungen sind so gewählt, dass die Pflanzen in ihrer Spaltöffnungsrhythmik nicht beeinträchtigt werden. Die ¹³⁴Cs markierten Aerosolpartikel von definierter Teilchengröße und das gasförmige, elementare ¹³¹I werden homogen in die Kammeratmosphäre eingebracht und der Konzentrationsverlauf während des Experiments gemessen. Nach Abschluß der ¹³¹I- und ¹³⁴Cs-Exposition werden die Pflanzen rasch aus der Kammer entfernt und der γ -spektrometrischen Messung zugeführt. Durch Filtration der Kammeratmosphäre und Wechseln der Kammerinnenflächen werden die gleichen Ausgangsbedingungen für weitere Expositionsmessungen wiederhergestellt.

2.1 Aufbau der Depositionskammer

Zur Durchführung der Expositionsexperimente steht eine alleinstehende ventilierte Garage (ca. 5 m × 2,5 m × 2,3 m) mit aufgesetzter fester Bodenwanne zur Verfügung. Darin wird die Depositionskammer mit den Innenmaßen 4 m × 1,8 m × 1,9 m aus einem Holzgerüst und fester, an den Längsseiten doppelt verschweißter PE-Folie (160 µm Wandstärke) als äußerer Hülle errichtet. Die hintere Wand ist ebenfalls durch doppelte Schweißnähte dicht verschlossen. An der Vorderfront wird reichlich Folie überstehend gelassen, um an dieser Stelle jeweils zu Expositionsbeginn die Kammer von dieser Seite aus begehbar. Als zweite innere Hülle ist dünne (50 µm Wandstärke) PE-Folie überlappend an den tragenden Holzbalken mit Metallklammern festgenagelt. Diese Folie an den Wänden und der Decke wird zwischen den Versuchen gewechselt. Am Boden liegt auf der äußeren PE-Folie eine durchgehende Laminat beschichtete Spanplatte. Darauf ist ein Bewässerungsfließ aus dem Gärtnerbedarf ausgelegt, das nach den Depositionsversuchen gewechselt werden kann. Die in 5 Liter Töpfen gezogenen Gemüsepflanzen werden direkt darauf angeordnet. Der Aufbau der Kammer ist im Querschnitt schematisch in Abb. 2.1 wiedergegeben.

Die Depositionskammer hat also eine Grundfläche von 7,2 m² und kann bei einer Bestandsdichte von 11,11 Pflanztöpfen / m² insgesamt 80 Pflanztöpfe aufnehmen. Die Grundfläche ist somit groß genug, um bei einer Bestückung mit 4 unterschiedlichen Arten statistisch relevante Kollektive von jeweils 20 Pflanztöpfen vergleichen zu können. Das Kammervolumen von 13,7 m³ ist bei der gegebenen Grundfläche groß genug, um eine homogene Durchmischung der Kammeratmosphäre vor der Tracerdeposition zu erreichen und eine repräsentative Probenahme zu gewährleisten.

Abb. 2.1 Schema des konstruktiven Aufbaus der Depositionskamme Querschnitt

In die Kammer sind Anschlüsse zum Einlaß der Tracer, zur Entnahme von Proben und zur Installation von Messfühlern eingebaut. Mit einem Ventilationssystem kann wahlweise für die Durchmischung, Filtrierung und Luftwechsel der Kammeratmosphäre gesorgt werden. Ein Beleuchtungssystem ist oberhalb der Kammer installiert. Zum Wechsel der Gemüsepflanzen und der Probenvorbereitung nach der Exposition ist ein Anbau errichtet worden. 2.1.1 Die Anschlüsse für Tracerzugabe, Probenahme und Messfühler

An der Rückwand der Kammer ist zentral in 164 cm Höhe der PVC-Einlassstutzen für das ¹³⁴Cs markierte Aerosol angebracht. Über einen Kugelhahn ist der Einlass verschließbar. Direkt über dem Rohrstutzen, der 20 cm in die Kammer übersteht, sitzt ein PVC-Schlauch für die Zugabe von ¹³¹I₂-Gas. Dieser Schlauch ist mit einem Blindstopfen verschlossen, wenn keine Radiojodzugabe in die Kammer erfolgt. Ein dreiflügeliger Propeller unterhalb der Tracerzufuhr sorgt für die schnelle Verwirbelung der Depositionstracer in der Kammer. Im Grundriss der Kammer (Abb. 2.2) sind die Einlässe rot markiert.

Für die Probenahme ragen in 110 cm Höhe je ein Rohr und ein Schlauch an der seitlichen Wand etwa 13 cm in die Kammer. In das Rohr wird die MayPack-Kartusche zur Jod-Probenahme eingeführt (siehe Kapitel 2.3.2), am Schlauch ist ein Filterhalter für die Gesamtpartikelkonzentrationsmessung (¹³⁴Cs) befestigt. Rohr und Schlauch sind durch Blindstopfen verschließbar. An der Vorderwand der Kammer stehen verschließbare Anschlüsse für Impaktor und Partikelzähler zur Verfügung. In 120 cm Höhe ragt ein PVC-Schlauch (Impaktor) und ein Kupferrohr (Partikelzähler) je etwa 20 cm in die Kammer. Die Probenahmemöglichkeiten sind in Abb. 2.2 gelb markiert.

Auf der Höhe der Jodprobenahme ragt ein Meßfühler zur kontinuierlichen Messung von Temperatur und Luftfeuchte etwa 40 cm in die Kammer. Dieser Messfühler ist in Abb. 2.2 grün gekennzeichnet.

2.1.2 Das Ventilationssystem

Das Ventilationssystem dient dazu

- a) eine gleichmäßige Durchmischung der Kammeratmosphäre zu erreichen;
- b) Partikel aus der Kammeratmosphäre zu entfernen;
- c) die radioaktiven Tracer aus der Kammeratmosphäre zu entfernen;
- d) einen Luftmassenwechsel in der Kammer vorzunehmen.

Die gleichmäßige Durchmischung der Kammerluft nach der Tracerzugabe erfolgt durch zwei in die Kammer eingelassene Propellerflügel. Die Rotorachsen führen, über Stopfbuchsen gedichtet, zum außerhalb der Kammer gelegenen Motor. Die Drehzahl ist regelbar und es wird eine Frequenz eingestellt, die zu

-16-

Windgeschwindigkeiten in der Kammer im Bereich 0,1 - 0,2 m/s in einer Höhe von 0,1 m über dem Bewuchs führt. Der erste Propeller befindet sich an der Rückwand der Kammer direkt unterhalb vom Tracereinlaß, und fördert die Luft mit dem Tracer in Richtung Kammermitte. Der zweite Propeller ist zentral auf dem Kammerdach am anderen Ende der Kammer angebracht und fördert die Luft leicht schräg nach unten gerichtet wieder zurück (siehe Abb. 2.3). Bis auf Versuch A ist Ventilator 2 nur wenige Minuten in Intervallen während der Tracerzugabe eingeschaltet, Ventilator 1 in der Regel bis 10 Minuten nach Ende der Tracerzugabe.

Um die Partikel und die radioaktiven Tracer aus der Kammeratmosphäre zu entfernen, wird im Umluftverfahren Luft am vorderen Ende der Kammer abgesaugt, über Filter gereinigt und durch einen Seitenkanalverdichter mit nachgeschaltetem Partikelfilter wieder am hinteren Ende der Kammer in die Depositionskammer eingespeisst (siehe Abb. 2.3). Für den Luftmassenwechsel wird das Ventilationssystem von Umluft auf Abluft an Ventil 2 gestellt (siehe Abb. 2.3) und die Kammer geöffnet. Über Ventil 1 kann die Art der Filtration gewählt werden. Zu Beginn der Exposition soll die Kammeratmosphäre partikelfrei sein, um die Bildung von partikelgebundenem ¹³¹I zu minimieren. Dazu wird die Kammerluft über den Partikelfilter (GEA Delbag GmbH. Berlin, Handschuhbox-Filter, Filterklasse S) geleitet. Nach Exposition soll die Kammeratmosphäre von den verbliebenen Radionukliden gereinigt werden. Dazu werden über einen kombinierten Filter Partikel und Radiojod entfernt (GEA Delbag GmbH. Berlin, Handschuhbox-Filter mit Aktivkohle AKOLIT-B7). Um die Kontaktzeit der Kammerluft mit dem Filtermaterial zur Jodadsorption zu gewährleisten, ist die Förderleistung des Seitenkanalverdichters (Becker GmbH, Wuppertal) auf 30 m³ h⁻¹ beschränkt. Nach etwa einer Stunde Filtration ist die Kammerluft praktisch partikelfrei (< 90 Partikel / cm³), mindestens die gleiche Zeit wird die Luft von den Radionukliden gereinigt, bevor die Kammer geöffnet wird.

Abb. 2.3 Schematischer Grundriß der Depositionskammer mit den Anschlüssen für Tracerzufuhr (rot), den Propellern zum Durchmischen und dem Filtrationssystem.

2.1.3 Das Beleuchtungssystem

Die Kulturbedingungen für die in die Kammer eingesetzten Pflanzen sollen den Pflanzen erlauben, ihren regulären Tagesrhythmus der stomatären Blattöffnung fortzusetzen. Zum anderen soll die Photosynthese möglichst unterbunden werden, um eine Verarmung an CO₂ in der geschlossenen Kammer zu vermeiden, was zu unphysiologischen Zuständen führen könnte. Zu diesem Zweck ist das Beleuchtungssystem in seiner Intensität auf ein Niveau eingestellt, bei der noch keine Photosynthese stattfindet, aber der Lichtwechsel Nacht / Tag die Öffnung der Stomata anregt.

Zur Beleuchtung werden Tageslicht-Leuchtstoffröhren benutzt (Osram Cool white 36W/21, insgesamt 12 Leuchten mit je 36 Watt und 120 cm Länge in 4 Reihen). Die Leuchten sind etwa 25 cm oberhalb der Depositionskammer montiert, so dass die zusätzlich entwickelnde Wärme vorwiegend außerhalb der Kammer verbleibt. Da durch die leicht trübe äußere Hülle der Kammer mehr Licht als erwartet absorbiert wird, sind als Zwischenreihen zusätzlich noch Blaulicht-Leuchtstoffröhren montiert (Osram blue L58W/67, 8 Leuchten mit je 58 Watt und 150 cm Länge in 4 Reihen). In Abb. 2.4 ist die Anordnung der Leuchtstoffröhren über der Kammer wiedergegeben. Wie in einem Vorversuch gemessen wird, ist auf 30 cm Höhe (Bewuchshöhe) die Kammer bei einer Einstrahlung (Photonenflussdichte der photosynthetisch aktiven Strahlung) von 20 - 25 µmol m⁻² s⁻¹ homogen ausgeleuchtet und gerade die stomatäre Blattöffnung angeregt. Über eine Zeitschaltuhr kann der Lichtwechsel hell / dunkel vorgegeben werden. Während der Adaptionszeit der Pflanzen in der Kammer beginnt die Hellphase um 8 Uhr und dauert (abhängig von der Jahreszeit) 10 – 12 Stunden.

2.1.4 Anbau zur Probenvorbereitung

An die Garagenaußenwand ist aus gewebeverstärkter Folie auf einem Holzgerüst und einem dachpappenbeschlagenem Spanplattendach ein Anbau an die Klimakammer errichtet worden. Darin ist es möglich, witterungsgeschützt nach Ende der Exposition die Gemüsepflanzen zu ernten, durch Entfernen von äußeren und verwelkten Blättern als vermarktungsfähiges Gemüse vorzubereiten und in Transportkisten zu verpacken.

Abb. 2.4 Schematischer Grundriss der Depositionskammer mit dem Beleuchtungssystem aus Leuchtstoffröhren; insgesamt sind knapp 900 W Lichtleistung bei Betonung des blauen Spektralbereichs installiert.

2.2 Kenngrößen der Kulturpflanzen

Die Depositionskammer wird mit zwei verschiedenen Kombinationen von Blattgemüse beschickt. Die Arten sind nach Relevanz bei den Verzehrsmengen und nach unterschiedlicher Blattanordnung bzw. Blattrauhigkeit und -struktur ausgewählt. Die erste Zusammenstellung (im folgenden als Frühlingsgemüse bezeichnet) besteht aus Endivie, Kopfsalat, Pflücksalat (Eichblattsalat) und Spinat. Spinat und Pflücksalat bestehen aus offenen Blättern, wobei der mehr strukturierte Pflücksalat in die Höhe treibt. Endivie hat eine gekräuselte Struktur der Blätter, die sich im Vegetationszentrum stark verdichten; Kopfsalat bildet geschlossene Köpfe aus. Die zweite Zusammenstellung (im folgenden als Sommergemüse bezeichnet) besteht aus Grünkohl, Weißkohl und Spinat. Grünkohl treibt aus einem zentralen Achse ausladende, stark gekräuselte Blättern, die mit einer auffälligen Wachsschicht überzogen sind. Weißkohl dagegen bildet kompakte Köpfe. In beiden Gruppen ist Spinat vertreten, dieses Blattgemüse dient als Referenzart. In einem Vorversuch zum Test verschiedener Versuchsabläufe wird nur Kopfsalat eingesetzt. Alle Pflanzen werden am Lehrstuhl für Gemüsebau der TU München-Weihenstephan aufgezogen. In Tabelle 2.1 sind die verwendeten Arten und Sorten aufgeführt.

Entgegen der ursprünglichen Planung ist Wirsing nicht mit in die Untersuchung einbezogen. Wie sich in Gesprächen am Lehrstuhl für Gemüsebau herausgestellt hat, haben die Kohlgemüsearten eine geringere Bestandsdichte als die Frühlingsgemüsearten, d. h. pro Fläche können weniger Pflanzen eingesetzt werden. Um aber bei der erwarteten Variabilität bei der trockenen Ablagerung ein genügend großes Kollektiv für eine statistisch aussagekräftige Analyse zur Verfügung zu haben, können nur zwei Kohlarten in der Depositionskammer untergebracht werden. Wirsing ist von den Verzehrsmengen her nicht so bedeutend wie Weißkohl (Statistisches Jahrbuch 2002) und bildet ähnlich wie dieser geschlossene Köpfe aus. Obwohl die Blätter stärker strukturiert sind, wird deshalb ein recht ähnliches Depositionsverhalten wie bei Weißkohl erwartet. In Abwägung der Aussagekraft der Experimente mit Sommergemüse insgesamt und dem zusätzlichen Informationsgewinn bei Berücksichtigung von Wirsing wird auf diese Kohlart bei der Untersuchung verzichtet.

Damit bei unterschiedlicher Entwicklungsdauer alle Arten gleichzeitig ausgewachsen sind, erfolgte eine gestaffelte Aussaat. Eine große Überzahl wird ausgesät, damit möglichst einheitliche Pflanzen zum Eintopfen und später für die Kontaminierung ausgewählt werden können. Nach der Aufzucht werden je Art etwa 30 Pflanzen ausgewählt, von denen ca. 20 in die Expositionskammer eingesetzt werden und die restlichen zur Bestimmung der Pflanzenparameter zur Verfügung stehen.

Pflanzenart	Botanischer Name (nach Vogel, 1996)	Sorte (Züchter)
Spinat	Spinacia oleracea L.	Poncho (Enza)
Kopfsalat	Lactuca sativa L. var. capitata L.	E 13 63 10 (Enza)
Eichblattsalat (Pflücksalat)	Lactuca sativa L. var. crispa L.	Red Salad Bowl (Hild)
Endivien	Cichorium endivia L.	Nuance (Enza)
Weißkohl	<i>Brassica oleracea</i> L. convar. <i>capitata</i> (L.) Alef. var. <i>capitata</i> L.	Rolly F1 (JuliWa)
Grünkohl	<i>Brassica oleracea</i> L. convar. <i>acephala</i> (DC.) Alef. var. <i>sabellica</i> L.	Hammer (Aders)

 Tabelle 2.1
 Überblick über die eingesetzten Pflanzen.

2.2.1 Aufzucht der Kulturpflanzen

Aussaat: Kopfsalat, Endivie und Spinat werden in 4 cm-Erdpresstöpfe ausgesät; Salate 1 Korn/Topf, Spinat 3-5 Korn/Topf. rEichblattsalat wird auf Grund der geringen Keimfähigkeit in Saatschalen (150 Korn/Schale, TKS 1) ausgesät. Weiß- und Grünkohl werden in 77er Vefi-Zapfencontainer ausgesät, Traysubstrat (Fa. Klasmann-Deilmann).

Jungpflanzenanzucht: Bis auf Endivien werden alle Jungpflanzen mäßig warm angezogen, d.h. bei 16/14 °C Tag-/Nacht Heizungssollwert und Lüftungsöffnung bei 19 °C. Endivien wird warm, d.h. 20/18 °C Heizungssollwerte und Lüftung bei 23 °C, angezogen, um die Blühinduktion zu vermeiden. Bewässerungsdüngung zur Anzucht: Anstauen mit Nährlösung (Flory 9, EC 1,5-2 mS cm⁻¹) nach Bedarf.

Weiteres Vorgehen für den Vorversuch V

Pflanzung: Nach der Bodenbearbeitung mit der Fräse wird der Kopfsalat in den Frühbeetkasten gepflanzt, mit 60 kg N/ha, 60 kg P_2O_5 /ha, 95 kg K_2O /ha, 10 kg MgO/ha gedüngt und abgedeckt bis 26.4.02. Chemischer Pflanzenschutz ist nicht notwendig gewesen.

Entnahme der Versuchspflanzen: Als Versuchspflanzen werden solche ausgewählt, die eine repräsentative Größe und auf jeder Seite Nachbarpflanzen hatten. Die Pflanzen werden mitsamt des Wurzelballens (ca. gleicher Durchmesser wie beim oberirdischer Pflanzenteil) mit der Grabgabel entnommen und in 5-L-Töpfe gepflanzt. Bis zur Abholung werden die Pflanzen im Gewächshaus kultiviert, d.h. bei Bedarf gegossen. Am Tag der Abholung sind die Pflanzen turgeszent, die Stomataöffnung des Umblatts der Pflanzen liegt zwischen 0,3 und 0,5 mol m⁻² s⁻¹ (je nach Alter der Blätter) bei einer Einstrahlung von ca. 400 µmol m⁻² s⁻¹.

Weiteres Vorgehen für die Versuche A-D

Entgegen den Pflanzen aus dem Vorversuch werden die Pflanzen direkt in die Töpfe gepflanzt, in denen sie in die Depositionskammer gestellt werden. Das verhindert mögliche Verletzungen am Wurzelballen und verringert den Streß beim Umsetzen. Ausgehend von der Erfahrung des Vorversuchs werden die Pflanzen an die geringe Beleuchtungsintensitäten bei der Radionuklidexposition adaptiert.

Topfen: im 3-4-Blattstadium werden die Jungpflanzen in 5-L-Töpfe getopft. Als Substrat wird eine Mischung aus 60 % Schwarztorf (Potgrond, Fa. Klasmann-Deilmann), 30 % Torf-Kultur-Substrat (TKS 1, Fa. Floragard) und 10 % Harzschaum (Hygromull, Fa. Compo) verwendet. Bei Spinat werden 5 Presstöpfe je Topf, bei allen anderen 5 Pflanzen je Topf eingepflanzt.

Die Bewässerung im Gewächshaus erfolgt in der ersten Woche mit Leitungswasser von oben, anschließend werden die Pflanzen über die Ebbe-Flut-Bewässerung nach Bedarf mit einer Nährlösung (Volldünger Flory 9, EC ca. 1,5-2 mS cm⁻¹) mit Wasser und Nährstoffen versorgt. In der Vegetationshalle werden die Pflanzen nach Bedarf von oben in den Topf gegossen, einmal wöchentlich werden mit einer Volldünger-lösung (Flory 9, 0,3 g/l) die Nährstoffe ergänzt.

Pflanzenschutz: Bei Salaten und Spinat sind keine Pflanzenschutzprobleme aufgetreten. Bei den beiden Kohlarten wird chemischer Pflanzenschutz während der Kultur in der Vegetationshalle nötig. Gespritzt wird: am 25.6. mit Rody (10 ml/10 l Wasser) gegen Kohleule und Kohlweißling, am 27.6. Metasystox (10 ml/10 l Wasser) gegen Blattläuse und am 23.7. Ortiva (2 ml/2 l Wasser) gegen *Alternaria brassicae* gemischt mit Aminosol (1 ml/2 l Wasser) zur Pflanzenstärkung.

Da sich in Versuch A während der Kultur in der Klimakammer rasch Blattfäule ausbreitet und Spinat, Kopfsalat und Eichblattsalat zu schossen beginnen, wird bei

-23-

den nachfolgenden Versuchen die Luftfeuchte auf 70 % und die Tageslänge auf 11 bzw. 10 h reduziert. Bei Spinat kann dennoch nicht immer das Schossen vermieden werden, die Induktion erfolgt bereits im Langtag in der Vegetationshalle.

In der 2-wöchigen Kultur in den Klimakammern werden die Pflanzen durch niedrige Lichtintensitäten (siehe Tab. 2.2) an die Lichtverhältnisse bei der Exposition adaptiert.

Versuch Nr.	Pflanzenart	Aussaat Gewächshaus	Pflanzung/ Topfen Gewächshaus	Vegetationshalle	Klimakammer, Bedingungen	Transfer GSF
V	Kopfsalat	22.1.	27.2. Pflanzung Frühbeet- kasten	26.4. Kasten aufgedeckt, am 8.5. Pflanzen entnommen	-	13.5.
A	Kopfsalat	26.3.	17.4.	-	17.5.	3.6.
	Eichblatt	2.4.	24.4.	-	20°C, 80%rLF,	
	Endivien	11.3.	8.4.	-	90 μ mol m ⁻² s ⁻¹	
	Spinat	2.4.	24.4.	-		
В	Kopfsalat	29.4.	21.5.	5.6.	20.6.	3.7.
	Eichblatt	24.4.	8.5.	5.6.	20°C, 70%rLF, - 8-17 Uhr Licht, 100µmol m ⁻² s ⁻¹	
	Endivien	26.3.	8.5.	-		
	Spinat	10.5. Direktsaat in den Topf	-	5.6.	Ab 28.6. 17°C, 9-17 Uhr Licht, 50 µmol m ⁻² s ⁻¹	
С	Weißkohl	8.4.	30.4.	5.6.	17.7.	31.7.
	Grünkohl	8.4.	30.4.	5.6.	17°C, 70% rLF	
	Spinat	25.6.	11.7.	11.7.	9-17 Uhr Licht, 50 μ mol m ⁻² s ⁻¹	
D	Weißkohl	29.4.	14.5.	5.6.	6.8.	21.8.
	Grünkohl	29.4.	14.5.	5.6.	17°C, 70 %rLF	
	Spinat	15.7.	25.7.	25.7.	9-17 Uhr Licht, 50 μ mol m ⁻² s ⁻¹	

Tabelle 2.2	Termine der	Anzucht und	Aufstellung in	den j	jeweiligen	Kulturräumen
-------------	-------------	-------------	----------------	-------	------------	--------------

2.2.2 Bestimmung der Blattfläche

Eine wichtige Kenngröße für die trockene Deposition bei Blattpflanzen ist die Blattfläche. Mit ihr kann einmal der Entwicklungszustand einer Pflanzenart beschrieben werden (z.B. um saisonale Effekte bei der Deposition zu quantifizieren), zum anderen ist es ein Maß, um verschiedene Blattpflanzenarten untereinander zu vergleichen. In den Depositionsexperimenten werden voll entwickelte Pflanzen eingesetzt, so dass hier vor allem der Einfuß unterschiedlich großer Blattflächen verschiedener Arten diskutiert werden kann. Aber auch die Variabilität zwischen verschiedenen Kulturen werden sichtbar. Im allgemeinen bezieht man die Blattfläche auf die Standfläche der Pflanze im Bewuchs und spricht dann vom Blattflächenindex BFI:

BFI = Blattfläche
$$[m^2]$$
 / Standfläche $[m^2]$ (2.1)

Der BFI wird z.B. in radioökologischen Modellen zur Parametrisierung der trockenen Deposition benutzt. So wird bei Müller & Pröhl (1993) die saisonale Abhängigkeit der (trockenen) Depositionsgeschwindigkeit über die relative Änderung des BFI (bezogen auf die voll entwickelte Pflanze) beschrieben.

Experiment	Gemüseart	Blattfläche / Pflanztopf [m²]	BFI
Α	Spinat	0,390 ± 0,113	4,33 ±1,26
	Pflücksalat	0,494 ± 0,117	5,48 ±1,30
	Endivie	0,611 ± 0,074	$6,\!79\pm0,\!82$
В	Spinat	$\textbf{0,296} \pm \textbf{0,018}$	$\textbf{3,29} \pm \textbf{0,20}$
	Pflücksalat	$\textbf{0,726} \pm \textbf{0,060}$	$8,06\pm0,67$
	Endivie	$\textbf{0,736} \pm \textbf{0,131}$	8,18 ± 1,45
С	Spinat	$\textbf{0,}\textbf{427} \pm \textbf{0,}\textbf{027}$	$4,75\pm0,30$
D	Spinat	$0,427\pm0,057$	4,74 ± 0,63

Tabelle 2.3 Blattfläche und Blattflächenindex (bei einer Einheitsfläche von 0,09 m² /Pflanztopf) für die verschiedenen Blattgemüsearten in Versuch A-D.

Spinat, Pflücksalat und eingeschränkt auch Endivie bestehen aus Einzelblättern, die glatt und so flexibel sind, dass von diesen Pflanzen die Blattfläche bestimmt werden kann. Bei der Messung wird das Blatt auf eine Glasplatte gepresst und im Durchlicht praktisch die Schattenfläche des Blattes (die sog. projizierte Blattfläche) vermessen. Vor jedem Depositionsexperiment werden in der Regel 5 Gemüsetöpfe für die Bestimmung der Blattfläche ausgewählt. Mittelwert und Standardabweichung dieser Messungen sind in Tabelle 2.3 wiedergegeben. Jeder Pflanztopf dieser Gemüsearten wird in der Depositionskammer eine Grundfläche von 0,3 m × 0,3 m zugewiesen, die sie auch meist vollständig abdeckt. Der daraus resultierende BFI ist ebenfalls in Tabelle 2.3 eingetragen.

2.2.3 Messung der stomatären Blattöffnung

Der Transfer von elementarem Jod in die Blattfläche ist stark abhängig von der Öffnung der Blattstomata. Adams & Voillequé (1971) berichten von einem um einen Faktor 2,4 höheren Transfer für Gras bei geöffneten Stomata gegenüber geschlossenen. Die Blattöffnung hängt im wesentlichen von der Einstrahlung, der Luftfeuchte und der Temperatur ab. Während der Depositionsversuche werden diese Parameter konstant in engen Toleranzen gehalten und so eingestellt, dass die Blattöffnung gewährleistet ist.

Vor Expositionsbeginn wird in der Kammer an verschiedenen Pflanzen die Blattöffnung kontrolliert. Dazu wird mit einem Porometer (PLC4 mit Leaf Chamber Analyser LCA4, Analytical Development Company Ltd., Heddesdon, England) die stomatäre Leitfähigkeit für Wasserdampf gemessen. Bei diesem Verfahren wird die Diffusion von Wasserdampf aus dem Blatt in die Umgebungsluft als Maß für die Spaltöffnung herangezogen. Man macht sich dabei die Eigenschaft zu Nutze, dass die kutikuläre Leitfähigkeit für Wasserdampf etwa 100mal kleiner als die stomatäre ist (siehe Tab. 2.4). Legt man nun, ähnlich wie in Abb. 2.5, eine Küvette an ein Blatt an und lässt Luft mit genügend hoher Geschwindigkeit über die Blattoberfläche streichen (der Diffusionsweg durch die Grenzschicht muss minimiert werden), so ist die Zunahme der Luftfeuchtigkeit ein Maß für die mittlere Öffnungsweite aller Stomata des Blattes. Für Details siehe v. Willert et al. (2000).

Tabelle 2.4Leitfähigkeit der Wasserdampfdiffusion durch Stomata und Kutikula von
Blättern (nach v. Willert et al., 2000).

	Leitfähigkeit			
	[mm s ⁻¹] [mol m ⁻² s ⁻¹]			
Stomata				
offen, weichlaubige Blätter	2 – 20	0,08 - 0,8		
Kutikula				
weichlaubige Blätter	0,05 - 0,2	0,002 - 0,008		

Abb. 2.5 Schematische Darstellung eines Diffusionsporometers (modifiziert nach v. Willert et al., 2000). Ein Blatt wird an die Decke einer Küvette angedrückt und Luft bläst über das Blatt. Aus dem Anstieg der Wasserkonzentration bestimmt sich die stomatäre Leitfähigkeit.

Kurz vor dem Verschließen der Depositionskammer wird die Lufttemperatur, relative Luftfeuchte, Lichtintensität auf Blatthöhe und die Blattleitfähigkeit notiert. Die Messwerte sind in Tab. 2.5 wiedergegeben. Man erkennt, dass alle Leitfähigkeitsmesswerte im Bereich für geöffneter Stomata liegen (Tab. 2.4) und den im Vorversuch im Freiland gemessenen Werten entsprechen. Besonders hoch sind die Leitfähigkeiten bei Spinat in Versuch A und B.

Tabelle 2.5Kenndaten der Gemüsepflanzen bei Expositionsbeginn. Die Messdaten
sind jeweils zu dem angegebenen Termin erhoben.

		Luft- temperatur	Relative	Photonenflußdichte an der Blattfläche	Stomatäre Leitfähigkeit
		[°C]	[%]	$[\mu mol m^{-2} s^{-1}]$	$[\text{mol } \text{m}^{-2} \text{ s}^{-1}]$
Experiment A	Endiviensalat	19.5	98.9	22	0.70
7.6.2002				23	1.18
11:05	Kopfsalat			20	0.57
				26	0.71
	Pflücksalat			20	0.90
				26	0.89
	Spinat			20	1.80
Experiment B	Endiviensalat	19.1	73.6	20	0.46
5.7.2002				20	0.35
10:30	Kopfsalat			22	0.45
				23	0.20
				23	0.57
	Pflücksalat			20	0.42
				26	0.63
	Spinat			20	1.97
Experiment C	Grünkohl	21.0	97.4	23	1.68
2.8.2002				26	0.77
10:55	Weißkohl			21	0.55
				20	0.42
	Spinat			20	0.62
				20	0.71
Experiment D	Grünkohl	22.6	99.0	26	0.51
24.8.2002				31	0.55
10:30	Weißkohl			20	0.71
				26	0.48
	Spinat			20	0.48
				23	0.27
				26	0.58
				26	0.45

2.2.4 Weitere Pflanzenparameter

Generell wird von allen exponierten Gemüsepflanzen neben dem Analysengewicht das Frischgewicht der gesamten Pflanze gemessen, nur bei Grünkohl wird lediglich das Gewicht der zu analysierenden Blätter bestimmt. Von allen Gemüsearten wird an mehreren Pflanzen neben dem Frischgewicht das Trockengewicht bestimmt. Dafür werden überzählige Pflanzen benutzt, die nicht exponiert werden. Das Gewicht bezieht sich immer auf das marktfähige Gemüse, d.h. die äußeren verdorbenen Blätter sind entfernt. In Tab. 2.6 sind die Meßdaten der Frischgewichte zusammengefasst und in Tab. 2.7 die Bewuchsdichte (Ertrag) angegeben, der sich aus Frischgewicht und Pflanzdichte (siehe unten, Tab. 2.9) berechnet. Die gemessenen Verhältnisse Trocken- zu Frischgewicht sind in Tab. 2.8 wiedergegeben.

Tabelle 2.6	Median der Frischgewichte der exponierten Gemüsepflanzen für jedes
	Experiment.

	Frischgewicht / Pflanztopf [g]								
	Endivie	Kopfsalat	Pflücksalat	Spinat	Grünkohl	Weißkohl			
Experiment A	204,5	273	142	149,5					
Experiment B	229,0	450	183	140,5					
Experiment C				167,5	(547 *)	1042			
Experiment D				138,0		1517			

* Mittelwert aus 3 Meßwerten

	Bewuchsdichte [kg / m²]								
	Endivie	Kopfsalat	Pflücksalat	Spinat	Grünkohl	Weißkohl			
Experiment A	2,27	3,03	1,58	1,66					
Experiment B	2,54	5,00	2,03	1,56					
Experiment C				1,86	(2,83 *)	6,95			
Experiment D				1,53		10,1			

* Mittelwert aus 3 Meßwerten

	Trocken- / Frischgewicht [%]					
	Endivie	Kopfsalat	Pflücksalat	Spinat	Grünkohl	Weißkohl
Messung 1	5,37	3,44	4,44	6,18	10,75	6,25
Messung 2	4,63	3,20	4,37	6,50	12,48	6,89
Messung 3		3,16	4,16	6,37	11,00	
Messung 4				6,59		
Messung 5				6,19		
Mittel	5,0 ± 0,4	3,3 ± 0,2	4,3 ± 0,2	6,4 ± 0,2	11,4 ± 0,9	6,6 ± 0,5

Tabelle 2.8 Verhältnis Trocken- zu Frischgewicht für alle Gemüsearten.

2.2.5 Anordnung der Pflanzen in der Depositionskammer

Das Frühlingsgemüse in der Depositionskammer sind in Gruppen zu je 9 Pflanzen und einer Reihe Einzelpflanzen angeordnet (Abb. 2.6 links); das Sommergemüse in Gruppen von 4 – 14 Pflanzen (Abb. 2.6 rechts). Eine zufällige Mischung der Einzelpflanzen wird vermieden, da die Pflanzen unterschiedliche Stammhöhen aufweisen und sich abschatten könnten. Überdies werden sie auch in der Kultur im Bestand gezogen. Andererseits birgt ein einzelnes Beet je Art das Risiko, das etwaige Inhomogenitäten oder Randeffekte die Interpretation der Ergebnisse einer einzelnen Gemüseart insgesamt fragwürdig machen könnten. Deshalb ist die gewählte Anordnung ein Kompromiss, der insbesonders bei der Referenzspezies Spinat auf eine hohe Vergleichbarkeit der Resultate setzt.

Die Gemüsearten Kopfsalat, Endivie, Pflücksalat und Spinat bedecken in ihren Pflanztöpfen etwa die gleiche Grundfläche, während die Kohlarten Weißkohl und Grünkohl wesentlich ausladendere Pflanzen ausbilden. Deswegen ist den erstgenannten Arten immer die gleiche kleinere Standfläche zugewiesen, während für die Kohlarten eine gleichbleibend größere Standfläche notwendig ist (siehe Tab. 2.9). Die Photos Abb. 2.7 (Frühlingsgemüse) und 2.8 (Sommergemüse) zeigen die Kammer in der oben beschriebenen Anordnung und Bestandsdichte kurz vor Expositionsbeginn.

Frühlingsgemüse					Э	Somme	rgemüse	
K1 - 9		E1 - 9			W1 - 4	G1 - 4		
S	51-9		-	P1 -	9	S1 - 9		
E10 - 18		K10 - 18				W5- 18		
P10 - 18		S10 - 18			G 5 - 14	S10 - 18		
5 19	19	r 19	3 20	е 20	20			

- Abb. 2.6 Anordnung der Gemüsearten Kopfsalat (K), Endivie (E), Spinat (S), Pflücksalat (P), Weißkohl (W) und Grünkohl (G) in der Depositionskammer. Die Nummern bezeichnen die individuellen Pflanzen.
- Tabelle 2.9Standfläche eines Pflanztopfes und resultierende Pflanzdichte der
verschiedenen Gemüsearten (in allen Versuchen gleichbleibend).

Gemüseart	Standfläche [m ²]	Pflanzdichte [m ⁻²]
Endivie, Kopfsalat Pflücksalat, Spinat	0,09	11,11
Weißkohl	0,15	6,67
Grünkohl	0,193	5,19

Abb. 2.7 Die Depositionskammer bestückt mit Frühlingsgemüse.

Abb. 2.8 Die Depositionskammer bestückt mit Sommergemüse.

2.3 Exposition mit gasförmigem, elementarem ¹³¹I₂

Radiojod tritt wie stabiles Jod in der Atmosphäre in verschiedenen Formen auf und unterliegt dort unter dem Einfluß von solarer Strahlung, reaktiven Verbindungen (wie z.B. Ozon, NO_x, etc.) und Partikeln fortwährender Transformationen (Whitehead, 1984). Es kommt gebunden an Aerosolpartikel vor oder aber gasförmig vor allem in den chemischen Formen elementares Jod ($^{131}I_2$) und organisches Jod (Methyljodid, CH₃¹³¹I). Bei der trockenen Deposition von Radiojod sind je nach physikalisch-chemischer Form unterschiedliche Depositionsgeschwindigkeiten gefunden worden. Am schnellsten wird das gasförmige, elementare I₂ deponiert, mehr als 2 Größenordnungen langsamer ist die Deposition von organischem Jod, partikelgebundenes Jod wird um einen Faktor 20 langsamer deponiert (Heinemann & Vogt, 1980). In dieser Studie soll bevorzugt das schnell deponierende elementare Jod untersucht werden, da es sich besonders effektiv auf Bewuchs ablagert und damit rasch Eingang in die Nahrungskette findet.

2.3.1 Erzeugung von elementarem ¹³¹I₂

Elementares ¹³¹I₂ wird nach einer Methode erzeugt, die zuerst Dailey et al. (1945) vorgeschlagen haben. Kommerziell erhältliches Na¹³¹I in einer Natriumhydroxidlösung (Amersham Buchler GmbH, Braunschweig) und FeSO₄ als Katalysator

Abb. 2.9Bei der Zugabe konzentrierter H_2SO_4 und 30%igem $H_2O_2 zu Na^{131}I$ und
FeSO₄ wird gasförmiges $^{131}I_2$ allmählich freigesetzt und mit einem N₂-
Trägergas in die Depositionskammer gespült.

werden in eine Waschflasche gegeben (siehe Abb. 2.9). Konzentrierte H_2SO_4 und 30% iges H_2O_2 werden dazugegeben. Folgende Reaktion wird in der Flasche ablaufen:

$$2\text{Nal} + \text{H}_2\text{O}_2 + \text{H}_2\text{SO}_4 \implies \text{I}_2 + \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$$
$$\text{H}_2\text{O} + \text{FeSO}_4$$

Das freigesetzte gasförmige Jod wird mit einem partikelfreiem Stickstoffträgergas in die Kammer gespült, wo es sogleich von zwei Ventilatoren gleichmäßig verteilt wird.

2.3.2 Kenndaten des emittierten Radiojods in der Depositionskammer

Das kontinuierlich freigesetzte ¹³¹l₂ wird in einem partikelfreiem inertem Trägergasstrom (230 cm³/s) 90 Minuten lang in die Depositionskammer gespült. Dort wird es mittels zweier Ventilatoren mit der Kammerluft vermischt. Auch in der Kammeratmosphäre ist unter Anwesenheit von Partikeln, Beleuchtung und organischem Material eine Umsetzung des elementaren Jods in die verschiedenen Jodformen zu rechnen. Um den Anteil an elementarem Jod möglichst hoch zu halten werden zwei Maßnahmen getroffen. So ist die Beleuchtungsintensität so niedrig, dass gerade die stomatäre Blattöffnung angeregt ist und die Jodumsetzung nicht forciert wird. Die Kammerluft wird vor Expositionsbeginn von Partikeln gereinigt, um die Bildung von partikelgebundenem Radiojod zu unterdrücken.

Während der Zugabe des Jodtracers und in der Regel zu einem weiteren Zeitpunkt während der Jodexposition wird die Konzentration an ¹³¹I und ihre Aufteilung in elementares ¹³¹I₂, organisch gebundenes und partikelgebundenes ¹³¹I gemessen. Dazu wird eine Filterkartusche (MayPack, Bird & Tole Ltd., England) benutzt, wie sie schematisch in Abb. 2.10 dargestellt ist. Kammerluft wird mit einer Membranpumpe (25-30 I/min) durch die Kartusche gefördert, in der am Anfang die Partikel im Glasfaserfilter (Whatman GF/A, Nr. 1820 060) festgehalten werden. Danach befinden sich zwei Aktivkohlefilter in Reihe (Whatman 72, Nr. 1872 060), mit denen das elementare Jod fixiert wird. Im Zentrum ist eine Patrone, in der sich 20 g Aktivkohle befinden, die mit Triethylendiamine (TEDA) imprägniert sind. Darin wird das organische Jod gebunden. Diese Patrone, an deren Enden sich feinmaschiges Gitternetz befindet, wird mit einer Feder dicht gepackt gehalten. Am Ausgang ist noch ein Backup-Filter aus Aktivkohle, um möglicherweise hindurch diffundiertes Jod aufzufangen. Die Probenahmedauer beträgt zwischen 25 Minuten und 3,5 Stunden.

Abb. 2.10 MayPack Filterkartusche zur Bestimmung der Gesamtradiojodkonzentration in der Kammerluft. Die Kartusche wird von links nach rechts durchströmt und hält in den verschiedenen Filtern die drei Radiojodfraktionen zurück (Beschreibung siehe Text).

In Tabelle 2.10 ist die Aufteilung des Radiojods auf die drei möglichen Fraktionen des Radiojods wiedergegeben. Die Angabe über das elementare ¹³¹l₂ umschließt die Summe aller Aktivkohlefilter, wobei der Backup-Filter in der Regel wenige Prozent beträgt. In einer Messung allerdings ist der Beitrag 34%. In der Rubrik "Total" ist für jedes Experiment das Integral der Konzentration der jeweiligen Radiojodfraktion über die Expositionszeit ins Verhältnis gesetzt. Dabei wird ein exponentieller Abfall nach (bzw. vor) der Tracerzufuhr angenommen (siehe unten). Wie man der Tabelle entnehmen kann, ist es gelungen, die Bildung von partikulärem Radiojod fast vollständig zu unterdrücken. Lediglich in Versuch A ist ein nennenswerter Beitrag gemessen worden. Organisches Jod bildet sich in der Kammer bei Beleuchtung und Anwesenheit von Pflanzen in größerem Maße; der Anteil ist in der Regel kurz nach dem Ende der ¹³¹l₂ Zufuhr am höchsten. Insgesamt ist aber der Anteil von elementarem Radiojod in allen Versuchen (außer Experiment A) mit über 70 % dominierend.

Die Konzentrationsverläufe der verschiedenen Radiojodfraktionen in der Kammer sind in Abb. 2.11 dargestellt. Dabei wird angenommen, dass nach Ende der Tracerzufuhr in die Kammer, das in der Regel auch das Ende der ersten MayPack-Probennahme ist, ein exponentieller Konzentrationsabfall stattfindet. Der Fit wird mit dem Messwert der zweiten (und gegebenenfalls dritten) MayPack-Probenahme (Zeitpunkt: Mitte der Probenahme) als Stützpunkt durchgeführt. In Versuchen D und E wird zusätzlich für die organische Komponente eine Konzentration nahe Null zum Zeitpunkt des Expositionsendes angenommen. Anderenfalls wäre der Beitrag des organischen Jods in diesen Versuchen unrealistisch hoch.

Tabelle 2.10Prozentuale Aufteilung des Radiojods auf die drei Haupterscheinungs-
formen. Die Vorversuche wurden in kleineren Beuteln (etwa 100 L)
durchgeführt, wobei nur in Vorversuch 3 Pflanzen beigefügt waren.
"Total" bezeichnet das Integral über die gesamte Expositionszeit.

	elementares ¹³¹ I ₂	partikelgebundenes ¹³¹ l	organisches ¹³¹ I
	[%]	[%]	[%]
Vorversuch 1	98,7	0,9	0,4
Vorversuch 2	95,1	4,7	0,2
Vorversuch 3 (mit Spinat)	85,6	4,1	10,3
Experiment A			
Messung 1	45,7	26,2	28,1
Messung 2	54,8	1,9	43,3
Total	51,0	15,0	33,9
Experiment B			
Messung 1	79,8	1,2	19,0
Messung 2	81,3	n.n.	18,7
Messung 3	100	n.n.	n.n.
Total	85,9	1,4	12,7
Experiment C			
Messung 1	81,9	2,7	15,3
Messung 2	70,8	0,6	28,6
Total	73,0	1,9	25,2
Experiment D			
Messung 1	74,0	4,4	21,6
Messung 2	59,8	1,0	39,2
Total	71,0	2,7	26,3
Experiment E			
Messung 1	82,5	7,5	1,0
Messung 2	77,0	2,0	21,0
Total	79,7	5,7	14,5

n.n.: nicht nachgewiesen.

Abb. 2.11 a Konzentrationsverlauf der Radiojodfraktionen in der Depositionskammer an Hand der MayPack-Messungen in Experiment A und B.

Abb. 2.11 b Konzentrationsverlauf der Radiojodfraktionen in der Depositionskammer an Hand der MayPack-Messungen in Experiment C und D.

Abb. 2.11 c Konzentrationsverlauf der Radiojodfraktionen in der Depositionskammer an Hand der MayPack-Messungen in Experiment E.

Der Konzentrationsverlauf in der Kammeratmosphäre (wie in Abb. 2.11 a-c dargestellt) wird benutzt, um die gesamte Radiojodexposition der Gemüsepflanzen über die Kammerluft abzuschätzen. Dazu wird die Fläche unter den Kurven von Abb. 2.11 berechnet, also das zeitliche Integral der Luftkonzentrationen gebildet. Die einzelnen Konzentrationen finden sich im Anhang Tabelle A1, in Tab. 2.11 sind die Ergebnisse der Integration zusammengefasst. Die integrale Radiojodkonzentration ist die Bezugsgröße für die insgesamt auf dem Blattgemüse deponierte Jodaktivität und kann als Referenz zur Abschätzung einer Depositionsgeschwindigkeit herangezogen werden. Bis auf Versuch A wird die integrale Radiojodkonzentration jedes Experiments durch das elementare, gasförmige ¹³¹l₂ dominiert.

Experiment	¹³¹ I integrale Aktivitätskonzentration [MBq s / m ³]						
	elementares $^{131}I_2$	partikuläres ¹³¹ I	organisches ¹³¹ I	Gesamtradiojod			
Α	4,42	1,30	2,94	8,66			
В	1,40	0,0235	0,207	1,63			
С	1,18	0,0305	0,408	1,62			
D	1,56	0,0593	0,576	2,19			
E	2,48	0,179	0,451	3,11			

Tabelle 2.11 Integrale Radiojodkonzentration pro Depositionsexperiment

2.4 Exposition mit partikelgebundenem ¹³⁴Cs

Das Blattgemüse wird in einer Atmosphäre mit partikelgebundenem ¹³⁴Cs exponiert und das Verhältnis der Ablagerung auf die verschiedenen Gemüsearten gemessen. Da der Depositionsprozeß abhängig von der Partikelgröße ist, muss die Partikelgrößenverteilung des markierten Aerosols während des Experiments gemessen werden. Das erzeugte Aerosol soll möglichst monodispers sein, um das Experiment eindeutig beschreiben zu können. Die Größe des Aerosols soll wahrscheinlichen Freisetzungsszenarien entsprechen. Beim Tschernobyl Aerosol werden entfernt von der Quelle Medianwerte von 0,8 µm aerodynamischer Durchmesser gemessen (Tschiersch & Georgi, 1987), was einem gealtertem atmosphärischem Aerosol entspricht. Im Nahbereich einer Freisetzung werden kleinere Mediane erwartet, da das leichtflüchtige Cäsium sich aus der Gasphase an Partikel anlagert. Beide Szenarien sollen in der Kammer simuliert werden.

2.4.1 Erzeugung von ¹³⁴Cs markierten Aerosolpartikeln

Ziel ist es, ¹³⁴Cs auf einem monodispersen Trägeraerosol zu fixieren und dieses getracerte Aerosol in der Depositionskammer zu dispergieren. Kommerziell erhältlich sind monodisperse Partikel, meist aus Latex oder Silikat gefertigt. Neuerdings sind solche Partikel auch mit fluoreszierenden Farbstoffen oder anderen Tracern versehen. In der Literatur wird der Cs-selektiver Ligand Calix[4]krone-6 beschrieben (Casnati, A. et al., 1995), der zur Bindung von ¹³⁴Cs auf einer Oberfläche geeignet ist. Der Firma postnova analytik, München, ist es nun gelungen diesen Liganden auf der Oberfläche monodisperser Partikel aus Polystyrene-Latex zu fixieren. Mischt man in wässriger Phase diese Partikel mit Radiocäsium, erhält man das gewünschte Traceraerosol. Beschafft werden Suspensionen mit diesen ligandenbeschichteten Partikeln mit einem nominalen Partikeldurchmesser von 800 nm und 150 nm und einem Feststoffanteil von 5% in der Suspension.

Vernebelt man dieses Traceraerosol aus der wässrigen Phase werden neben den zugegebenen monodispersen Partikeln noch zusätzlich (wegen immer vorhandenen Verunreinigungen selbst in H₂O_{dest}) viele Partikel im Submikronbereich erzeugt. Befindet sich dann noch radioaktives Cäsium in der Suspension, werden auch diese kleinen Partikel mit Radiocäsium beladen sein. Dies ist für eine eindeutige Charakterisierung des Depositionsexperimentes hinderlich. Deshalb muss nach der Fixierung des Cäsiums auf den Partikeln die Trägerflüssigkeit möglichst frei von Radiocäsium sein.

In Praxis treten allerdings Schwierigkeiten auf, die Trägerflüssigkeit, aus der das Aerosol erzeugt wird, mit der nötigen Reinheit herzustellen. Zum Einen wird das Radiocäsium in der Regel geträgert mit stabilem Cäsium vertrieben. Der Ligand ist sensitiv auf Cäsium, und wenn die überwiegende Anzahl angebotener Atome stabiles Cäsium ist, wird auch überwiegend stabiles Cäsium auf den Partikeln gebunden. Die Folge sind nur schwach aktive Partikel und eine hohe Restaktivität in der Trägerflüssigkeit. Zum anderen ist die Bindung an den Liganden keine stabile, sondern eine Komplexbindung, die abhängig ist von anderen angebotenen Ionen und dem pH-Wert. In dem saurem Milieu, dass vom Hersteller vorgeschlagen wird, kann auch nach mehreren Reinigungsschritten keine stabile Fixierung erreicht werden. Es wird deshalb ein Verfahren zur Erzeugung von ¹³⁴Cs-aktiven Partikeln bei schwach aktiver Trägerflüssigkeit erarbeitet, dass im Folgenden beschrieben ist.

Mit dem Isotopenlabor, Risø National Laboratory, Roskilde, Dänemark ist ein Lieferant für ¹³⁴Cs mit relativ geringem stabilem Trägeranteil gefunden worden. Das ¹³⁴Cs wird mit hoher spezifischer Aktivität (0.6-1.2 TBq/g Cs) in der chemischen Form von CsCl, in H₂O gelöst, geliefert. Eine kleine Menge dieses aktiven Tracers wird mit 3 ml H₂O , 3 ml 10⁻² N NaOH und 4 ml Orginal-Partikelsuspension gemischt.

Die Zugabe von NaOH stellt das Gemisch schwach basisch ein (pH 10), das sich als das beste Milieu für die ¹³⁴Cs-Bindung erwiesen hat. Dieses Gemisch wird etwa einen Tag bei Raumtemperatur (20 °C) geschüttelt, um ein Absedimentieren der Partikel zu verhindern und ausreichend Zeit zur Komplexbindung zur Verfügung zu haben. Anschließend wird die Suspension von nicht fixiertem ¹³⁴Cs gereinigt. Bei 4000 Umdrehungen/min wird die Lösung 30 min zentrifugiert. Der Überstand (etwa 9 ml) wird abpipetiert und das Partikelsediment in 10 ml H₂0 wieder suspendiert. Durch Zugabe von NaOH wird der pH auf etwa 10 gehalten. Diese Prozedur wird in der Regel 3-4mal durchgeführt. In der wässrigen Phase kann dann noch etwa 1‰ der Gesamtaktivität gefunden werden. In Abb. 2.12 ist eine Testsequenz von 6 Reinigungsschritt ist nur noch eine geringfügige Verringerung der Aktivitätskonzentration im Überstand zu erreichen.

Abb. 2.12 Konzentrationsverlauf der ¹³⁴Cs-Aktivität in der wässrigen Phase über dem Partikelsediment nach der angegebenen Anzahl von Reinigungs- schritten im gering basischem Milieu.

2.4.2 Dispersion der markierten Partikel in die Depositionskammer

Zum des Aerosols aus der wässrigen Suspension wird Erzeugen ein Aerosolgenerator vom Typ ATM 230 (TOPAS GmbH, Dresden) benutzt. Das Arbeitsprinzip des Generators beruht auf der Vernebelung einer Flüssigkeit über eine Zerstäubungsdüse. Die Düse wird mit filtrierter Druckluft betrieben; der Eingangsdruck regelt die Teilchenproduktionsrate. In Abb. 2.13 ist der Generator im Schema dargestellt. Für die Erzeugung der ¹³⁴Cs-Tracerpartikel wurde der Generator leicht modifiziert. Wie sich in Versuch A herausgestellt hat, kann in dem Atomizergefäß aus Edelstahl kein schwach basischer pH stabil eingestellt werden. Wie oben ausgeführt, ist nur bei dieser Bedingung gewährleistet, dass das ¹³⁴Cs stabil gebunden bleibt. Deshalb wurde für die späteren Experimente ein vollständiger Einsatz (Topf mit Deckel) aus Polyethylen (PE) hergestellt. Zusätzlich wurde das Prallblech entfernt und die Düse wurde so ausgerichtet, dass das zersteubte Material in gleicher Entfernung wie vorher auf das Prallblech jetzt auf die PE-Wandung trifft. Das meiste Material läuft in großen Tropfen wieder in das Zerstäubungsgefäß zurück, nur das fein zerstäubte Material verlässt das Gefäß mit dem Trägergasstrom aus filtrierter Luft. Mit dem Einsatz aus PE wird erreicht, dass auch nach Ende der Aerosolerzeugung die Suspension im Atomizergefäß noch im basischen Bereich liegt und man davon ausgehen kann, dass nur wenig ¹³⁴Cs wieder in Lösung gegangen ist.

Abb. 2.13 Schema des Aerosolgenerators. Im Atomizergefäß befindet sich die Suspension mit den ¹³⁴Cs markierten monodispersen Partikeln die über den Atomizer zerstäubt werden und mit der Trägerluft am Aerosolauslaß den Generator verlassen.

Zugemischte trockene, filtrierte Luft sorgt dafür, dass die gebildeten Tröpfchen bis zum Eintritt in die Depositionskammer trocknen und nur noch die Tröpfchenkerne (d.h. die mit ¹³⁴Cs markierten Polystyrene-Latex-Partikel) verbleiben. Die Zuluft verringert außerdem die Partikelkonzentration in der Leitung bis zur Kammer und vermindert die Gefahr der Koagulation der Partikel.

2.4.3 Kenndaten der emittierten Partikel in der Depositionskammer

Der Aerosolgenerator emittiert die mit ¹³⁴Cs getracerten Partikel in die Depositionskammer, wo sie sofort mit Ventilatoren in der Kammeratmosphäre vermischt werden (Fig. 2.3). Die gleichmäßige Emission in die Kammer dauert je nach Experiment 50-70 Minuten. Kurz nach Emissionsende wird die Größenverteilung des Kammeraerosols mit einem Berner Impaktor LPI 30 (Hauke KG, Gmunden) gemessen. In diesem Impaktor werden die Partikel im Größenbereich 0,06 – 16 µm in 9 logarithmisch äquidistanten Größenklassen getrennt auf Aluminiumfolien deponiert (Berner & Lürzer, 1980). Die Folien werden gewogen und γ-spektrometrisch auf ¹³⁴Cs (und ¹³¹I) hin analysiert.

In Abb. 2.14 – 2.16 sind die Größenverteilungen der Radionuklidaktivitätskonzentrationen und der Massenkonzentration für die Frühlingsgemüse-, Sommergemüse- und Filterexperimente aufgetragen. Auf Grund der kurzen Sammeldauer und den niedrigen Konzentrationen sind die Messungen der Masse und der Jodaktivität mit einer hohen Messunsicherheit behaftet, während der Messfehler in den unteren und mittleren Partikelgrößenfraktionen der Cäsiumaktivität nur wenige Prozent beträgt. In Versuch A - C und E werden Partikel mit nominal 0,8 µm erzeugt, in Versuch D mit 0,15 µm. Bis auf Versuch D liegen die Maxima der Cäsiumverteilung im erwarteten Bereich. In Versuch D liegt das Maximum höher als der Nominalwert. Auffällig ist ferner, dass in Experiment A ein sehr hoher Anteil der Cäsiumaktivität in der Fraktion der kleinsten Partikeln zu finden ist. Wie eine pH-Messung der aktiven Suspension nach dem Experiment ergibt, hat sich der pH während der Vernebelung der Partikel ins saure Milieu verschoben, was zu einer Freisetzung des komplexgebunden ¹³⁴Cs führt (Kapitel 2.4.1). Mit den in Kapitel 2.4.2 beschriebenen Maßnahmen ist das in den nächsten Versuchen unterbunden worden und die Verteilungen nehmen einen monodispersen Verlauf an.

Die Verteilungen für partikelgebundenes ¹³¹I zeigen ein uneinheitliches Bild. Während bei den Sommergemüseexperimenten ein sehr großer Anteil im ultrafeinen Bereich gefunden wird, liegt das Maximum bei den anderen Experimenten bei etwas größeren Partikeln. Da die Kammeratmosphäre vor dem Versuch gefiltert wurde, folgt die Masseverteilung im wesentlichen der ¹³⁴Cs-Verteilung, nur der Beitrag im Grobstaubbereich ist höher.

Unter der Annahme einer Log-Normalverteilung wird der Median und die geometrische Standardabweichung σ_g der Verteilungen berechnet. Zusammen mit den Gesamtaktivitäten und Gesamtmassen der Impaktormessungen sind diese Daten in Tab. 2.12 aufgeführt. Für ¹³⁴Cs ergeben sich in den Versuchen A, B und E nahezu identische Medianwerte, die nahe am Nominalwert liegen. Auch die σ_g - Werte stimmen gut überein. In den Versuchen C und D weichen die gemessenen Mediane von den Nominalwerten erheblich ab. Die Versuche finden im August bei hoher Kammertemperatur und -feuchte statt. Zur Zeit der Probenahme liegen diese bei etwa 31 °C und 94 % rel.Feuchte, was zu einer Anlagerung von Wasserdampf an den Partikeln und damit zu einem Feuchtewachstum geführt haben kann. Die Mediane beider Versuche unterscheiden sich allerdings, wobei in Experiment D wie geplant der kleinste Median aller Versuche erreicht wird.

Abb. 2.14 Aktivitätsgrößenverteilung des mit ¹³⁴Cs markierten Aerosols (blaue Säulen) bei den Versuchen A (oben) und B (unten) mit Frühlingsgemüse in der Kammer. In der Abszisse ist der Medianwert des Partikeldurchmessers einer Stufe angegeben. Zusätzlich sind die Verteilungen für die ¹³¹I-Aktivität (in Versuch B unter der Nachweisgrenze) und die Gesamtmasse eingetragen.

Abb. 2.15 Aktivitätsgrößenverteilung des mit ¹³⁴Cs markierten Aerosols (blaue Säulen) bei den Versuchen C (oben) und D (unten) mit Sommergemüse in der Kammer. In der Abszisse ist der Medianwert des Partikeldurchmessers einer Stufe angegeben. Zusätzlich sind die Verteilungen für die ¹³¹I-Aktivität und die Gesamtmasse eingetragen.

Abb. 2.16 Aktivitätsgrößenverteilung des mit ¹³⁴Cs markierten Aerosols (blaue Säulen) bei dem Versuch E mit Filterpapier ausgelegt in der Kammer. In der Abszisse ist der Medianwert des Partikeldurchmessers einer Stufe angegeben. Zusätzlich sind die Verteilungen für die ¹³¹I-Aktivität und die Gesamtmasse des Aerosols eingetragen.

Tabelle 2.12 Median, geometrische Standardabweichung σ_g und Gesamtaktivität de	er
Partikelgrößenverteilungen unter Annahme einer Log-Normalverteilun	g.

Experiment ¹³⁴ Cs			¹³¹			Masse				
Nr,	Ø _{nominal} [µm]	Median [µm]	σ_{g}	Aktivität [Bq/m ³]	Median [µm]	σ_{g}	Aktivität [Bq/m ³]	Median [µm]	σ_{g}	Masse [mg/m ³]
Α	0,8	0,71	1,9	290	0,52	2,2	8,5	1,3	3,5	0,41
в	0,8	0,72	1,8	150	_*)	_*)	_*)	0,85	3,6	0,27
С	0,8	1,1	1,8	160	0,19	3,1	0,83	1,3	2,6	0,29
D	0,15	0,58	2,3	560	0,35	2,9	1,6	0,96	2,9	0,28
Е	0,8	0,72	1,8	240	0,28	2,4	1,6	0,76	2,6	0,22

-*) unter der Nachweisgrenze

-48-

Die Mediane der ¹³¹I-Verteilungen liegen bei wesentlich niedrigeren Partikeldurchmessern, wie es typisch ist für ein Aerosol, das aus der Gasphase frisch gebildet wird oder sich neu angelagert hat. Die Massenmediane sind generell höher als die Nominalwerte des emittierten Aerosols, was durch den Einfluß der Feuchte auf das Kammeraerosol zu erklären ist.

2.4.4 Konzentrationsverlauf der ¹³⁴Cs Aktivität während der Pflanzenexposition

Während der gesamten Expositionszeit der Gemüsepflanzen mit partikulärem ¹³⁴Cs wurde die Kammerluft zur Ermittlung der ¹³⁴Cs Konzentration beprobt. Über einen etwa 30 cm langen PVC-Schlauch (10 mm Innendurchmesser) wird Luft aus der Kammer mittels einer Pumpe durch einen Membranfilter mit der Porengröße 0,2 µm (Sartorius GmbH, Göttingen, Typ SM N 11107) gezogen. Die beaufschlagten Filter werden 4-6mal gewechselt, um den Konzentrationsverlauf zu verfolgen und die integrale ¹³⁴Cs Konzentration zu bestimmen. Nach einer Standzeit von einem Tag in Petrischalen werden die Filter luftdicht in PE-Beuteln verschweißt und der γ -Spektrometrie zugeführt.

Abb. 2.17 a Verlauf der ¹³⁴Cs Aktivitätskonzentration in der Kammeratmosphäre in Experiment A. Zum Vergleich sind die ¹³¹I Aktivitätskonzentrationen mit eingezeichnet (partikulär (p), elementar (e) und organisch (o)).

Abb. 2.17 b Verlauf der ¹³⁴Cs Aktivitätskonzentration in der Kammeratmosphäre für die Experimente B - D.

Abb. 2.17 c Verlauf der ¹³⁴Cs Aktivitätskonzentration in der Kammeratmosphäre in Experiment E. Zum Vergleich sind die ¹³¹I Aktivitätskonzentrationen mit ein-gezeichnet (partikulär (p), elementar (e) und organisch (o)).

In den Abbildungen 2.17 a-c kann der ¹³⁴Cs Aktivitätsverlauf in der Depositionskammer verfolgt werden. Die ¹³¹I Aktivitätskonzentrationen sind zum Vergleich ebenfalls mit eingetragen. Der zeitliche Versatz der Tracerzugaben soll die Bildung von partikulärem Radiojod vermeiden helfen, was bis auf Experiment A auch sehr gut gelungen ist. Die Abnahme der ¹³⁴Cs Konzentration erfolgt im allgemeinen recht rasch nach dem Ende der Tracerzufuhr in die Kammer. In Versuch E (Filterpapier) scheint die Abnahme am langsamsten zu sein.

Aus dem ¹³⁴Cs Konzentrationsverlauf in der Kammeratmosphäre kann wiederum die gesamte Radiocäsiumexposition der Gemüsepflanzen berechnet werden. Dazu wird die Fläche unter den ¹³⁴Cs Aktivitätskurven für jedes Experiment berechnet, d.h. das zeitliche Integral der ¹³⁴Cs Luftkonzentration bestimmt. Diese Größe dient dann als Bezug zur insgesamt deponierten ¹³⁴Cs Aktivität auf den Pflanzen. Mit der integralen ¹³⁴Cs Aktivitätskonzentration der Kammerluft kann schließlich die Depositionsgeschwindigkeit für jedes Experiment abgeschätzt werden. Die einzelnen Konzentrationsmesswerte sind im Anhang Tabelle A2 aufgeführt, in Tab. 2.13 sind die integralen Luftkonzentrationen der verschiedenen Experimente zusammengestellt.

Experiment	¹³⁴ Cs integrale Aktivitätskonzentration
	[MBq s / m³]
Α	7,76
В	3,02
С	2,01
D	8,55
E	4,31

Tabelle 2.13Integrale ¹³⁴Cs Konzentration pro Depositionsexperiment.

2.5 Analytische Methoden

Zum Nachweis der Radioisotope ¹³¹I und ¹³⁴Cs, die als Tracer eingesetzt werden, dient die γ-Spektrometrie. Ausgewertet werden die charakteristischen γ-Übergänge bei 364,5 keV für ¹³¹I und 604,7 keV für ¹³⁴Cs. Die ¹³⁴Cs Messwerte werden auf Summenkoinzidenz korrigiert. Wegen der kurzen Halbwertszeit von ¹³¹I (8,02 d) werden eine Vielzahl der Detektoren des γ-Spektrometrielabors des Instituts parallel benutzt. Die Kenndaten der Detektoren, die Programme zur Spektrenauswertung und die Qualitätssicherung sind im Detail in Ruckerbauer et al. (1997) beschrieben. Typischerweise seien hier die Kenndaten des koaxialen GMX Reinst-Germanium Detektorsystems (EG & G Ortec, Oak Ridge, Tennessee, USA) angeführt: n-Typ, 57,0 mm Durchmesser, 56,3 mm Länge, Aluminium Cup mit 0,5 mm Beryllium Fenster, Energiebereich 20-2500 keV, rel. Effizienz 33,9 % (bei 1,33 MeV), Auflösung (FWHM) 2,05 keV (bei 1,33 MeV). Die Messzeit wird so gewählt, dass in der Regel ein statistischer Fehler von 3% nicht überschritten wird.

Die Messgeometrien richten sich nach der Art der Probe. Die Gemüseproben werden sofort nach Abschluß der Exposition der Pflanzen in 1 L-Ringschalen (Marinelli-Becher) in zerkleinertem Zustand eingefüllt. Diese Probengröße erlaubt oft die ganze Pflanze, bei großen Pflanzen eine repräsentative Teilprobe zu messen. Die zerkleinerten und gemischten Pflanzenteile lassen eine weitgehend homogene Befüllung der Ringschalen zu. Die Ringschalen werden mit einem Deckel verschlossen und bei 2 °C im Kühlschrank bis zur Messung gelagert.

Von jeweils 2 Pflanztöpfen jeder Spezies pro Experiment werden die Pflanzen halbiert. Die eine Hälfte wird wie oben beschrieben in Marinelli-Becher gefüllt. Von der anderen Hälfte werden die ungenießbaren Teile entfernt, dann wird der Rest zerkleinert, gewogen, in einen Maschendrahtkorb gegeben und 1 Minute lang 10mal in 5 L deionisiertes Wasser bei einer Temperatur von 20 °C getaucht und darin geschwenkt. Danach wird das anhaftende Wasser etwa 30 Minuten abtropfen gelassen und schließlich abgeschüttelt. Das derart gewaschene Blattgemüse wird ebenfalls in 1 L-Ringschalen eingefüllt, die mit einem Deckel verschlossen und bei 2 °C im Kühlschrank bis zur Messung gelagert werden. Von dem Waschwasser wird jeweils eine Teilprobe von 0,5 L in eine 500 cm³ Ringschale gefüllt und dicht verschlossen bis zur Messung bei Raumtemperatur gelagert.

Die bis zu 88 Gemüseproben pro Versuch können bei optimaler Nutzung der Laborkapazität im Verlauf von etwa einer Woche spektrometriert werden.

Die zur Exposition ausgelegten Filterabschnitte von Experiment E werden zusammengefaltet in eine Dosengeometrie gepresst, die oberhalb des Detektors positioniert ist.

Für die MayPack-Filter wird eine Filtergeometrie angepasst, die schon für die Partikelfiltermessung zur Verfügung steht. Die Filter werden ebenfalls direkt auf dem Detektor platziert. Die Kohleschüttung wird in einer Dosengeometrie gemessen.

Zur Messung der Impaktorproben, wo in einzelnen Stufen extrem kleine Aktivitäten zu erwarten sind, können zwei Bohrlochdetektoren genutzt werden. Die Kenndaten des GCW Reinst-Germanium Detektor Systems mit niedrigem Background (Canberra, USA) sind: n-Typ, 59,5 mm Durchmesser, 45,0 mm Länge, Lochdurchmesser 16 mm, 40 mm Länge, Aluminium Cup, Energiebereich 20-2500 keV, rel. Effizienz 20,2 % (bei 1,33 MeV), Auflösung (FWHM) 1,94 keV (bei 1,33 MeV). Bei den Filtermessungen werden in der Regel 5% statistischer Fehler nicht überschritten, bei Konzentrationen nahe der Nachweisgrenze müssen allerdings höhere Fehler in Kauf genommen werden. Die Messzeit bei den Impaktorproben ist dabei typischerweise 2-3 Tage.

2.6 Versuchsablauf

Der typische Versuchsablauf ist in Abb. 2.18 wiedergegeben. Die mit Blattgemüse bestückte Kammer wird um 12 h geschlossen, die Luft 75 min filtriert und anschließend 90 min Radiojod in die Kammer eingeführt (kleiner roter Balken). Um eine Anlagerung des gasförmigen Jods an Partikel zu vermeiden, wird mit der Zugabe des partikulären Radiocäsiums noch etwa 3 Stunden gewartet. Die Jod-konzentration in der Kammer (roter Kurvenzug) hat stark abgenommen, wenn 50 min lang das partikuläre ¹³⁴Cs zugegeben wird (kurzer blauer Balken). Während der gesamten Expositionszeit (langer blauer Balken) wird die Cäsiumkonzentration in der Kammer in Intervallen gemessen (blauer Kurvenzug). Der Versuch endet mit dem Filtern der Kammerluft und der Entnahme der exponierten Pflanzen. Das Beleuchtungsregime mit seinem Hell- / Dunkel-Wechseln ist ebenfalls in der Abbildung eingetragen.

Abb. 2.18 Der zeitliche Verlauf eines Depositionsexperimentes; Erläuterungen siehe Text.

2.7 Homogenitätstest

Um zu testen, ob die Ablagerung des gasförmigen Radiojods und des partikelgebundenen Radiocäsiums in der Depositionskammer homogen stattfindet, wenn eine einheitliche Grundfläche angeboten wird, wird die Kammer mit Filterpapier ausgelegt. Dazu ist auf 30 cm Höhe, was der mittleren Pflanzenhöhe entspricht, mit einem Netz aus PE ein zweiter Boden in der Kammer eingezogen. Dieser zweite Boden wird gleichmäßig mit Luftfiltermaterial aus organischen Fasern (Viledon FA2311, Fa. Freudenberg, Weinheim) der Größe 30 cm × 30 cm ausgelegt. Diese quadratischen Filterstücke bedecken jeweils gerade die Grundfläche eines Pflanztopfes der Frühlingsgemüsearten. Die Anordnung in der Kammer und die Bezeichnung der Filterstücke entspricht ebenfalls der Anordnung und Bezeichnung der Frühlingsgemüsearten wie sie in Abb. 2.6 dargestellt ist.

Die Bedingungen in der Kammer sollen beim Homogenitätstest den Experimenten mit Gemüse gleichen. Um die Luftfeuchtigkeitswerte mit Pflanzen zu erreichen (Tab. 2. 5) ist das Bewässerungsfließ am Kammerboden befeuchtet und die Kammeratmosphäre wird vor dem Schließen der Kammer mit einem Luftbefeuchter zusätzlich mit Wasserdampf angereichert. Zu Expositionsbeginn wird eine Temperatur von 27°C und eine Luftfeuchte von 86 % rel. Feuchte gemessen, die Beleuchtung entspricht ebenfalls die der Pflanzenexperimente. Der Betrieb der Ventilatoren entspricht den Betriebsperioden von Experiment B-D. Der Versuchsablauf ist der gleiche wie bei den Pflanzenexperimenten (siehe Kapitel 2.6). Abbildung 2.19 zeigt die Kammer belegt mit den Filterquadraten kurz vor Expositionsbeginn zur Zeit der Luftbefeuchtung.

Abb. 2.19 Die Depositionskammer ausgelegt in einer Höhe von etwa 30 cm mit Quadraten aus Filtermaterial. Oben rechts im Bild sieht man die Zufuhr an vernebelten entionisierten Wasser zur Luftbefeuchtung kurz vor dem Schließen der Kammer.

3 Ergebnisse der Ablagerungsversuche

Wie in Kapitel 2 diskutiert, sind insgesamt 5 Ablagerungsversuche mit elementarem ¹³¹I und partikelgebundenem ¹³⁴Cs durchgeführt worden. Die Charakteristika der Radiojodexposition (Konzentrationsverlauf, Zusammensetzung, etc.) in der Kammeratmosphäre sind in Kapitel 2.3 dargelegt, die Charakteristika der Radiocäsiumexposition (Konzentrationsverlauf, Größenverteilung, etc.) in Kapitel 2.4. Im folgenden werden die Ergebnisse der Ablagerung auf die Frühlings- und Sommergemüsearten und auf Filterpapier vorgestellt (Kapitel 3.1), statistisch analysiert (Kapitel 3.2) und Schlussfolgerungen (Kapitel 3.3) gezogen.

3.1 Auf dem Blattgemüse deponierte Radionuklide ¹³¹I und ¹³⁴Cs

Die Aktivitätskonzentration der deponierten Radionuklide ¹³¹I und ¹³⁴Cs (in Bq/kg Frischmasse) ist im Anhang Tabelle A3 im einzelnen dokumentiert und in Abbildung 3.1 a)-e) visualisiert. Die Kammer ist bestückt mit den Gemüsepflanzen wie in Abb. 2.6 aufgeschlüsselt. Den einzelnen Pflanzen ist ein Farbintensitätswert 0-255 zugeordnet, welcher der abgelagerten Aktivität entspricht: die höchste Aktivitätskonzentration bedeutet höchste Farbintensität des jeweiligen Experiments, die niedrigste Aktivitätskonzentration bedeutet niedrigste Farbintensität. Die Farbwerte dazwischen sind linear interpoliert und zugeordnet. Die Jodaktivitäten sind in grün gehalten, die Cäsiumaktivitäten in rot. Mit dieser Visualisierung können einmal die artenspezifische Unterschiede sichtbar gemacht werden, aber auch die Variabilität innerhalb einer Spezies. Darüber hinaus lassen sich mit dieser ortsabhängigen Darstellung auch mögliche Inhomogenitäten der Ablagerung in der Kammer erkennen.

Nach dem Vorversuch ohne Radionuklidexposition wird chronologisch mit Experiment A begonnen. Der häufige andauernde Betrieb der Ventilatoren während der Nuklidzufuhr verursacht besonders bei der Radiojoddeposition eine Zunahme der Ablagerung zum Ende der Kammer, besonders im Bereich des hinteren Ventilators (siehe Abb. 3.1 a). Diese Inhomogenität bewirkt u.a. eine große Streuung der Messdaten der besonders betroffenen Pflanzenarten Spinat und Pflücksalat (siehe auch Abb. 3.2.). Zusammen mit anderen Unzulänglichkeiten der Exposition bei diesem Experiment wie beginnendes Schossen von Spinat, Kopfsalat und Pflücksalat (siehe Kap. 2.2.1), hoher Anteil ultrafeiner Partikel mit größerer Depositionsgeschwindigkeit für ¹³⁴Cs (siehe Abb. 2.14) und hoher Anteil von partikulärem und organischem ¹³¹I mit kleinerer Depositionsgeschwindigkeit für ¹³⁴I (siehe Tab. 2.10) wird die Aussagekraft dieses Versuchs fragwürdig. Bei der Interpretation der Ablagerung auf Frühlingsgemüse wird sich deshalb vor allem auf Experiment B gestützt, bei dem diese Schwierigkeiten nicht auftreten.

In den folgenden Experimenten werden wegen der erhöhten Ablagerung bei Experiment A im hinteren Teil der Kammer die Ventilatoren nur noch in kurzen Intervallen betrieben (siehe Kapitel 2.1.2). Die Ablagerung auf die gleichmäßig mit Filterpapier ausgelegte Kammer (Abb. 3.1 e, Anhang Tabelle A4) spiegelt also die Verhältnisse der Pflanzenexperimente B – D wider. Hier sind keine eindeutigen Inhomogenitäten visuell mehr feststellbar. Eine statistische Analyse des Homogenitätsversuchs findet sich in Kapitel 3.2.1.

Betrachtet man die Unterschiede der Ablagerung bei dem Frühlingsgemüse (Abb. 3.1 a und b) erkennt man bei Radiojod die höchste Deposition bei den Spinatbeeten, die niedrigste Deposition bei den Kopfsalatbeeten. Die Cäsiumablagerung ist auf den Pflücksalat- und Spinatbeeten am höchsten, Kopfsalat ist auch hier am wenigsten kontaminiert. Dieses Ablagerungsschema zeigt sich sogar bei den Einzelpflanzen der letzten Reihe. Auf Grund der großen Streuung der Messdaten ist aber eine statistische Auswertung für eine weitergehende Analyse notwendig (siehe Kapitel 3.2.2.)

Bei dem Sommergemüse (Abb. 3.1 c und d) sind die Ablagerungsplots wesentlich eindeutiger. Auf Weißkohl wird am wenigsten deponiert (sowohl Jod als auch Cäsium), auf Spinat dominiert die Deposition des gasförmigen Radiojods, auf Grünkohl die des partikelgebundenem Radiocäsiums. Die Streuung innerhalb einer Art scheint hier wesentlich geringer, genaueres liefert auch hier die statistische Auswertung (Kapitel 3.2.3).

Wie in Kapitel 2.5 ausgeführt, sind von jeweils 2 Pflanztöpfen jeder Spezies pro Experiment eine Hälfte wie üblich ungewaschen und sie zweite Hälfte zusätzlich in gewaschenen Zustand auf ihre ¹³¹I und ¹³⁴Cs Aktivität hin analysiert worden. Wie an den Einzelwerten im Anhang, Tabelle A3, zu sehen ist, kann selbst die Kontamination auf einer einzelnen Pflanze inhomogen verteilt sein, so dass z.B. auf einer gewaschenen Teilprobe sogar eine höhere Radiojodkonzentration gefunden wird als auf der entsprechenden ungewaschenen Teilprobe. An Hand der Einzelergebnisse kann also keine Aussage über die Auswirkung des Waschens gemacht werden. Für die statistische Analyse in Kapitel 3.2.4 werden die Verhältnisse der Aktivitätskonzentration Gewaschen / Ungewaschen für alle Gemüseproben und für die Spinatproben herangezogen.

Abb. 3.1 a Schematische Visualisierung der deponierten Radionuklidkonzentration (in Bq/kg) für ¹³¹I (links) und ¹³⁴Cs (rechts) auf den Frühlingsgemüsearten Kopfsalat (K), Endivie (E), Spinat (S) und Pflücksalat (P) in der Depositionskammer bei Versuch A. Die Anordnung der Gemüsearten in Beeten und Einzelpflanzen ist in Kapitel 2.2.5 näher beschrieben. Ein Quadrat entspricht dem Standort einer Pflanze, die Farbintensität steht für die Höhe der deponierten Aktivität. Buchstaben mit hohem Schriftgrad bezeichnen ein Beet, mit niedrigen Schriftgrad Einzelpflanzen. Da nicht genügend gleich entwickelte Kopfsalatpflanzen zur Verfügung stehen, ist in den Kopfsalatbeeten je eine Endivienpflanze eingesetzt worden. Mit (*) ist eine Pflanze bezeichnet, von der das Gewicht nicht bestimmt ist; ihr ist der Medianwert des Gewichts dieser Art zugeordnet.

-60-

Abb. 3.1 b Schematische Visualisierung der deponierten Radionuklidkonzentration (in Bq/kg) für ¹³¹I (links) und ¹³⁴Cs (rechts) auf den Frühlingsgemüsearten Kopfsalat (K), Endivie (E), Spinat (S) und Pflücksalat (P) in der Depositionskammer bei Versuch B. Die Anordnung der Gemüsearten in Beeten und Einzelpflanzen ist in Kapitel 2.2.5 näher beschrieben. Ein Quadrat entspricht dem Standort einer Pflanze, die Farbintensität steht für die Höhe der deponierten Aktivität. Mit (*) ist eine Pflanze bezeichnet, bei der die Jodaktivität durch eine Nachmessung adjustiert ist.

Abb. 3.1 c Schematische Visualisierung der deponierten Radionuklidkonzentration (in Bq/kg) für ¹³¹I (links) und ¹³⁴Cs (rechts) auf den Sommergemüsearten Weißkohl (W), Grünkohl (G) und Spinat (S) in der Depositionskammer bei Versuch C. Die Anordnung der Gemüsearten in Beeten und Einzelpflanzen ist in Kapitel 2.2.5 näher beschrieben. Ein Quadrat entspricht dem Standort einer Pflanze, die Farbintensität steht für die Höhe der deponierten Aktivität.

Abb. 3.1 d Schematische Visualisierung der deponierten Radionuklidkonzentration (in Bq/kg) für ¹³¹I (links) und ¹³⁴Cs (rechts) auf den Sommergemüsearten Weißkohl (W), Grünkohl (G) und Spinat (S) in der Depositionskammer bei Versuch D. Die Anordnung der Gemüsearten in Beeten und Einzelpflanzen ist in Kapitel 2.2.5 näher beschrieben. Ein Quadrat entspricht dem Standort einer Pflanze, die Farbintensität steht für die Höhe der deponierten Aktivität. Mit (*) ist eine Pflanze bezeichnet, die während der Standzeit in der Kammer abgestorben ist und nicht vermessen ist.

Abb. 3.1 e Schematische Visualisierung der deponierten Radionuklidkonzentration (in Bq/kg) für ¹³¹I (links) und ¹³⁴Cs (rechts) auf Filterpapierquadraten in der Depositionskammer bei Versuch E. Die Anordnung der Filter in Beeten und Einzelpflanzen entspricht dem Standort einer Pflanze wie in Versuch A und B. Die Farbintensität der Filterflächen steht für die Höhe der deponierten Aktivität.

Die erhaltenen Ergebnisse werden zunächst mittels dem *Kruskal-Wallis Test* daraufhin überprüft, ob die mittlere Radionuklikonzentration (in Bq/kg Frischgewicht) von mindestens jeweils einer Gemüseart signifikant verschieden ist von den Radionuklidkonzentrationen, die für die anderen Gemüsearten gefunden wurden. Im Prinzip könnte man dazu auch die übliche Varianzanalyse verwenden. Diese setzt jedoch das Vorliegen einer Gauß-Normalverteilung der Werte voraus, die für Ablagerungsprozesse auf Gemüse vermutlich nicht erfüllt ist, oder zumindest nur mit einer sehr großen Probenzahl bewiesen werden könnte. Demgegenüber ist der Kruskal-Wallis Test ein nicht parametrischer Test (also verteilungsunabhängig), und somit für die Auswertung der o.a. Versuche vorzuziehen. Er beruht auf einem Rangsummenverfahren, das z.B. in Sachs (2002) beschrieben ist. Verwendet wurde das Rechenprogramm STATISTICA 5.1 (StatSoft GmbH, Hamburg).

Da der Kruskal-Wallis Test (falls er Unterschiede findet) noch nicht zeigt, für welche Gemüseart die Radionuklidablagerung größer oder kleiner ist, müssen nun alle Mittelwerte (besser die Mediane) mit dem U-Test von Mann-Whitney (ebenfalls ein nicht parametrischer Test und daher dem üblichen t-Test vorzuziehen) untereinander auf das Vorliegen von statistisch signifikanten Unterschieden verglichen werden. Auf diese Weise erhält man schließlich für jede Kombination Gemüse A / Gemüse B die sich die Medianwerte der Radionuklidablagerung Aussage, ob signifikant unterscheiden oder nicht. Folgende Signifikanzniveaus (p-Werte) werden differenziert: p < 0.001 (höchstsignifikant), p < 0.01 (hochsignifikant) und p < 0.05(signifikant), höhere p-Werte gelten als nicht signifikant. Der U-Test von Mann-Whitney ist ebenfalls ein Rangtest, der z.B. bei Sachs (2002) beschrieben ist. Benutzt wird das entsprechende Programmpaket in STATISTICA 5.1 (StatSoft GmbH, Hamburg).

Für diejenigen Kombinationen, für die auf diese Weise signifikant Unterschiede nachgewiesen sind, ist es dann gerechtfertigt, jeweils das Verhältnis der mittleren Aktivitätskonzentration und den zugehörigen Fehler anzugeben. Bildet man nun einfach von den Aktivitätskonzentrationen der m Pflanzen von Gemüse A und den n Pflanzen von Gemüse B jeweils den Mittelwert und berechnet daraus das Verhältnis Aktivitätskonzentration _{Gemüse A} / Aktivitätskonzentration _{Gemüse B} so muss man sich der eingeschränkten Bedeutung des Ergebnisses bewusst sein. Zum einen kann, wie oben erwähnt, nicht von Normalverteilung ausgegangen werden und es müssten die Verhältnisse der Mediane gebildet werden. Für diese Verhältnisse ist es aber nicht möglich einen Vertrauensbereich anzugeben. Darüber hinaus beeinflussen etwaige Ausreißer das Ergebnis.

Aus diesen Gründen wird hier ein Rangverfahren benutzt, um das mittlere Aktivitätsverhältnis von Gemüse A zu Gemüse B zu bestimmen. Rangverfahren sind unempfindlich gegen Ausreißer und setzten keine bestimmte Verteilung der Messdaten voraus. Das Vorgehen bei diesem Verfahren ist wie folgt. Zuerst werden eine genügend große Anzahl von Aktivitätswerten aus den beiden betrachteten Gemüsekollektiven A und B per Zufall ausgewählt und der Quotient dieser Einzelwerte gebildet. Aus diesen Aktivitätsverhältnissen wird eine Rangliste (nach aufsteigenden Werten geordnet) aufgestellt. An Hand von tabellierten Rangwerten (Sachs, 2002) lässt sich nun Median und Vertrauensbereich der Aktivitätsverhältnisse aus der Rangliste bestimmen. Die nötigen Berechnungen lassen sich in EXCEL (Microsoft Corp.) durchführen. Damit steht ein statistisch robustes Verfahren zur Verfügung, um die Aktivitätsverhältnisse und ihre Unsicherheit zu berechnen.

Für einen Versuch wurde die Permutation aller Aktivitätsverhältnisse zur Erstellung der Rangliste gebildet. Von dieser Rangliste wurden Median und Vertrauensbereich bestimmt. Vom selben Versuch wurden die Messwerte der betrachteten Gemüsearten mit einem Zufallsverfahren ausgewählt und das Verhältnis gebildet. Daraus wurde die Rangliste erstellt und wieder Median und Vertrauensbereich bestimmt. Wie man Tab. 3.1 entnehmen kann, differieren ab einem statistischem Kollektiv, das etwa 50% der Anzahl der Permutationen entspricht, Median und Vertrauensbereich aus der Permutation aller Messdaten zu dem stochastischen Verfahren nur noch geringfügig. Zur Auswertung aller Versuche wurde deshalb das stochastische Verfahren auf der Basis von einheitlich n=200 Zufallskombinationen gewählt. Bei dieser Größe des Datenkollektivs ist gewährleistet, dass jeweils mehr als 50% (aber auch nicht mehr als 100%) aller möglichen Kombinationen berücksichtigt werden.

Tabelle 3.1Rangtest auf der Basis von n=50, 100, 150, 200, 250 Zufallskombinationen und auf der Basis der Permutation aller
möglichen Kombinationen mit n=234, 221, 306. LS gibt die linke Schranke, RS die rechte Schranke des 95%
Vertrauensbereichs an.

Rangtest			Grünkol	hl/Spinat	Grünkohl/	Weißkohl	Weißkohl	/Spinat
			I-131	Cs-134	I-131	Cs-134	I-131	Cs-134
Zufallskombination	n=50	Median	0,167	2,337	16,629	79,510	0,0097	0,0270
		LS	0,157	2,071	12,841	62,815	0,0085	0,0235
		RS	0,189	2,599	21,267	96,675	0,0122	0,0319
	n=100	Median	0,176	2,499	17,597	85,698	0,0096	0,0268
		LS	0,164	2,296	15,329	73,969	0,0083	0,0221
		RS	0,189	2,624	21,267	103,058	0,0112	0,0303
	n=150	Median	0,180	2,460	18,390	84,162	0,0095	0,0270
		LS	0,167	2,327	15,996	74,473	0,0083	0,0246
		RS	0,189	2,572	21,267	96,303	0,0106	0,0303
	n=200	Median	0,180	2,380	19,247	83,792	0,0095	0,0270
		LS	0,171	2,274	16,294	75,537	0,0085	0,0246
		RS	0,186	2,526	21,938	91,548	0,0106	0,0293
	n=250	Median	0,180	2,338	19,011	77,382	0,0095	0,0271
		LS	0,171	2,175	15,997	73,969	0,0086	0,0248
		RS	0,186	2,429	21,672	85,993	0,0106	0,0293
Permutation aller Daten		Median	0,179	2,338	19,187	84,223	0,0095	0,0274
		LS	0,172	2,215	16,857	75,227	0,0086	0,0250
		RS	0,185	2,429	22,066	95,609	0,0105	0,0303
	n=		23	34	22	21	3	06

3.2.1 Auswertung des Homogenitätsversuchs

Wie in Kapitel 2.7 beschrieben, wird die Kammer mit Filterpapieren mit jeweils der gleichen Grundfläche (30 cm × 30 cm) wie die Grundfläche der einzelnen Frühlingsgemüsepflanzen belegt und ein Depositionsexperiment für ¹³¹I und ¹³⁴Cs durchgeführt. Für die deponierte Aktivitätskonzentration der Filterabschnitte in der ganzen Kammer wird ein Mittel für ¹³¹I zu (6950 ± 1210) Bq / kg bzw. für ¹³⁴Cs zu (1540 ± 273) Bq / kg bestimmt. Mit einem Rangverfahren ergeben sich Median und Vertrauensbereich wie in Tab. 3.2 wiedergegeben.

Tabelle 3.2	Median und 95% Vertrauensbereich der Aktivitätskonzentration aller
	Filterabschnitte (LS: Linke Schranke, RS: Rechte Schranke).

Aktivitätskonzentration [Bq/kg]	LS	Median	RS
¹³¹	6340	6710	7180
¹³⁴ Cs	1450	1520	1630

Im folgenden werden die Filterpapiere entsprechend ihrem Aufstellungsort in der Kammer wie die Gemüsepflanzen, für die sie Platzhalter sind, bezeichnet. Als Homogenitätstest werden nun die Flächen der jeweiligen Gemüsesorten miteinander verglichen. Dabei können die gleichen statistischen Prozeduren durchgeführt werden, wie später für die Gemüsepflanzen selbst. Bei vollständiger Homogenität würde der Kruskal-Wallis Test keine signifikante Unterschiede feststellen, mit dem U-Test keine Gemüseflächenkombination finden, die sich signifikant unterscheiden und schließlich das Verhältnis der Mediane (im Rahmen des Vertrauensbereichs) bei der Unität liegen.

Für ¹³¹I wird mit dem Kruskal-Wallis Test auch kein signifikanter Unterschied der Kollektive festgestellt (p=0,32) während für ¹³⁴Cs mindestens eine Filterfläche signifikant (p=0,044) herausfällt. Mit dem U-Test wird nun geprüft, für welche Filterflächen das Aktivitätsverhältnis sich signifikant von 1 unterscheidet. Nur die Filterflächenkombination Pflücksalat/Spinat unterscheidet sich (hoch-) signifikant für das Nuklid ¹³⁴Cs (siehe Tab. 3.3 und Abb. 3.1). Mit dem parameterfreiem Rangverfahren wird das Aktivitätsverhältnis der Flächen Pflücksalat/Spinat für ¹³⁴Cs zu 1,10 < **1,13** < 1,17 bestimmt. Das bedeutet, dass durch Inhomogenitäten bei der Deposition von einer Meßunsicherheit der Aktivitätsverhältnisse von etwa 13% bei diesen Flächen ausgegangen werden muss.

Tabelle 3.3 Signifikanzniveau (p-Wert) nach dem U-Test nach Mann-Whitney für den Vergleich der Aktivität auf den Filterflächen "Endivie", "Kopfsalat", "Pflücksalat" und "Spinat" für ¹³⁴Cs und ¹³¹I. Nur die Kombination "Pflücksalat" / "Spinat" bei ¹³⁴Cs zeigt einen signifikanten Unterschied.

¹³⁴ Cs	Endivie	Kopfsalat	Pflücksalat
Spinat	0,33	0,29	0,0045
Pflücksalat	0,070	0,12	
Kopfsalat	0,82		

¹³¹	Endivie	Kopfsalat	Pflücksalat
Spinat	0,083	0,25	0,28
Pflücksalat	0,48	0,86	
Kopfsalat	0,33		

Abb. 3.1 Median, 25%-75% Wertebereich, Minimal- und. Maximalwert der abgelagerten Aktivitätskonzentration auf den Filterpapierflächen der korrespondierenden Gemüseflächen; oben ¹³⁴Cs, unten ¹³¹I.

3.2.2 Auswertung der Frühlingsgemüseversuche

Höchstsignifikant (p<0,001) wird mit dem Kruskal-Wallis Test für die beiden Frühlingsgemüseversuche sowohl für ¹³⁴Cs als auch für ¹³¹I festgestellt, dass mindestens eine Gemüseart aus dem Gesamtkollektiv herausfällt. Die Aktivitätsbereiche sind jeweils in Abb. 3.2 und 3.3 dargestellt.

In Experiment A gehören die Kombinationen Endivie/Spinat und Endivie/Kopfsalat (¹³⁴Cs) bzw. Pflücksalat/Spinat (¹³¹I) jeweils zum selben Kollektiv, während die anderen Kombinationen signifikant verschieden sind. Die Signifikanzniveaus sind in Tab. 3.4 aufgelistet. Für diese Kombinationen ist das Verhältnis der Aktivitätskonzentrationen und der 95% Vertrauensbereich in Tab. 3.5 wiedergegeben.

In Experiment B können die Kombinationen Pflücksalat/Spinat (¹³⁴Cs) und Endivie/Spinat (¹³¹I) nicht unterschieden werden, während alle anderen Kombinationen höchstsignifikant verschieden sind, siehe Tab. 3.6. Für diese höchstsignifikanten Kombinationen sind die Aktivitätsverhältnisse (Median und Vertrauensbereich) in Tab. 3.7 wiedergegeben.

Abb. 3.2 Median, 25%-75% Wertebereich, Minimal- und. Maximalwert der abgelagerten Aktivitätskonzentration für die verschiedenen Gemüsearten bei Experiment A; oben ¹³⁴Cs, unten ¹³¹I.

Abb. 3.3 Median, 25%-75% Wertebereich, Minimal- und. Maximalwert der abgelagerten Aktivitätskonzentration für die verschiedenen Gemüsearten bei Experiment B; oben ¹³⁴Cs, unten ¹³¹I.

Tabelle 3.4 Signifikanzniveau (p-Wert) nach dem U-Test nach Mann-Whitney für den Vergleich der Frühjahrsgemüsearten Endivie, Kopfsalat, Pflücksalat und Spinat für ¹³⁴Cs und ¹³¹I. Nur die Kombinationen Endivie / Spinat und Endivie / Kopfsalat bei ¹³⁴Cs und Pflücksalat / Spinat bei ¹³¹I zeigen keinen signifikanten Unterschied (Experiment A).

¹³⁴ Cs	Endivie	Kopfsalat	Pflücksalat
Spinat	0,48	0,030	< 0,001
Pflücksalat	< 0,001	< 0,001	
Kopfsalat	0,17		

¹³¹	Endivie	Kopfsalat	Pflücksalat
Spinat	< 0,001	< 0,001	0,16
Pflücksalat	0,034	< 0,001	
Kopfsalat	0,0045		

Tabelle 3.5Verhältnis der Aktivitätskonzentration der Frühlingsgemüssearten mit95%Vertrauensbereich nach dem parameterfreiem Rangverfahren auf
der Basis von jeweils 200 Zufallswertepaaren.

Versuch A	¹³⁴ Cs				¹³¹	
	LS	Median	RS	LS	Median	RS
Endivie/Spinat				0,291	0,319	0,419
Kopfsalat/Spinat	0,803	0,839	0,889	0,150	0,168	0,189
Pflücksalat/Spinat	1,615	1,706	1,813			
Endivie/Pflücksalat	0,534	0,557	0,589	0,457	0,612	0,764
Kopfsalat/Pflücksalat	0,471	0,531	0,542	0,197	0,270	0,348
Kopfsalat/Endivie				0,421	0,498	0,573

Tabelle 3.6 Signifikanzniveau (p-Wert) nach dem U-Test nach Mann-Whitney für den Vergleich der Frühjahrsgemüsearten Endivie, Kopfsalat, Pflücksalat und Spinat für ¹³⁴Cs und ¹³¹I. Bis auf die Kombinationen Pflücksalat / Spinat bei ¹³⁴Cs und Endivie / Spinat bei ¹³¹I sind alle Kombinationen höchstsignifikant verschieden (Experiment B).

¹³⁴ Cs	Endivie	Kopfsalat	Pflücksalat
Spinat	< 0,001	< 0,001	0,48
Pflücksalat	< 0,001	< 0,001	
Kopfsalat	< 0,001		

¹³¹	Endivie	Kopfsalat	Pflücksalat
Spinat	< 0,001	< 0,001	< 0,001
Pflücksalat	0,15	< 0,001	
Kopfsalat	< 0,001		

Tabelle 3.7Verhältnis der Aktivitätskonzentration der Frühlingsgemüssearten mit95%Vertrauensbereich nach dem parameterfreiem Rangtest auf der
Basis von jeweils 200 Zufallswertepaaren.

Versuch B	¹³⁴ Cs				¹³¹ I	
	LS	Median	RS	LS	Median	RS
Endivie/Spinat	0,556	0,579	0,601	0,248	0,273	0,293
Kopfsalat/Spinat	0,305	0,314	0,325	0,101	0,111	0,125
Pflücksalat/Spinat				0,315	0,359	0,424
Endivie/Pflücksalat	0,537	0,557	0,586			
Kopfsalat/Pflücksalat	0,291	0,305	0,326	0,262	0,293	0,347
Kopfsalat/Endivie	0,541	0,501	0,589	0,383	0,429	0,463

3.2.3 Auswertung der Sommergemüseversuche

Höchstsignifikant (p<0,001) wird mit dem Kruskal-Wallis Test in den beiden Sommergemüseversuchen sowohl für ¹³⁴Cs als auch für ¹³¹I festgestellt, dass mindestens eine Gemüseart aus dem Gesamtkollektiv herausfällt. Die Aktivitätsbereiche sind jeweils in Abb. 3.4 und 3.5 dargestellt.

In Experiment C sind alle Kombinationen höchstsignifikant verschieden. Die Signifikanzniveaus sind in Tab. 3.8 aufgelistet. Für diese Kombinationen ist das Verhältnis der deponierten Aktivitätskonzentrationen und der 95% Vertrauensbereich in Tab. 3.9 wiedergegeben.

In Experiment D sind ebenfalls alle Kombinationen höchstsignifikant verschieden. Die Signifikanzniveaus sind in Tab. 3.10 notiert. Das Verhältnis der deponierten Aktivitätskonzentrationen und der 95% Vertrauensbereich sind in Tab. 3.11 wiedergegeben.

Abb. 3.4 Median, 25%-75% Wertebereich, Minimal- und. Maximalwert der abgelagerten Aktivitätskonzentration für die verschiedenen Gemüsearten bei Experiment C; oben ¹³⁴Cs, unten ¹³¹I.

Abb. 3.5 Median, 25%-75% Wertebereich, Minimal- und. Maximalwert der abgelagerten Aktivitätskonzentration für die verschiedenen Gemüsearten bei Experiment D; oben ¹³⁴Cs, unten ¹³¹I.

Tabelle 3.8Signifikanzniveau (p-Wert) nach dem U-Test nach Mann-Whitney für
den Vergleich der Sommergemüsearten Grünkohl, Weißkohl und
Spinat für ¹³⁴Cs und ¹³¹I. Alle Kombinationen sind höchstsignifikant
verschieden (Experiment C).

¹³⁴ Cs	Grünkohl	Weißkohl
Spinat	< 0,001	< 0,001
Weißkohl	< 0,001	

¹³¹	Grünkohl	Weißkohl
Spinat	< 0,001	< 0,001
Weißkohl	< 0,001	

Tabelle 3.9Verhältnis der Aktivitätskonzentration der Sommergemüssearten mit95%Vertrauensbereich nach dem parameterfreiem Rangtest auf der
Basis von jeweils 200 Zufallswertepaaren.

Versuch C	¹³⁴ Cs			¹³¹		
	LS	Median	RS	LS	Median	RS
Grünkohl/Spinat	2,013	2,084	2,211	0,321	0,348	0,382
Weißkohl/Spinat	0,057	0,058	0,061	0,025	0,028	0,031
Grünkohl/Weißkohl	32,32	35,36	38,76	12,01	13,07	14,06

Tabelle 3.10 Signifikanzniveau (p-Wert) nach dem U-Test nach Mann-Whitney für den Vergleich der Sommergemüsearten Grünkohl, Weißkohl und Spinat für ¹³⁴Cs und ¹³¹I. Alle Kombinationen sind höchstsignifikant verschieden (Experiment D).

¹³⁴ Cs	Grünkohl	Weißkohl
Spinat	< 0,001	< 0,001
Weißkohl	< 0,001	

¹³¹	Grünkohl	Weißkohl
Spinat	< 0,001	< 0,001
Weißkohl	< 0,001	

Tabelle 3.11 Verhältnis der deponierten Aktivitätskonzentration der Sommer-
gemüsearten mit 95% Vertrauensbereich nach dem parameterfreiem
Rangverfahren auf der Basis von jeweils 200 Zufallswertepaaren.

Versuch D	¹³⁴ Cs			¹³¹		
	LS	Median	RS	LS	Median	RS
Grünkohl/Spinat	2,274	2,380	2,526	0,171	0,180	0,186
Weißkohl/Spinat	0,0246	0,0270	0,0293	0,0085	0,0095	0,0106
Grünkohl/Weißkohl	75,54	83,79	91,55	16,29	19,25	21,94

3.2.4 Auswertung der Waschversuche

Um herauszufinden, ob durch das Waschen des Blattgemüses statistisch signifikant eine Reduktion der Kontamination mit ¹³⁴Cs bzw. ¹³¹I erreicht werden kann, werden zuerst größere Kollektive als die zwei Proben pro Spezies und Versuch gebildet. Zum Test auf Kontaminationsabnahme werden jeweils die Aktivitätsverhältnisse von gewaschenem zu ungewaschenem Pflanzenteil (in Bq / kg Frischgewicht) gebildet und in den Gruppen "Spinat" (8 Proben) und "alle Gemüsearten" (28 Proben) zusammengefasst. Das Waschwasser der gewaschenen Pflanzen ist ebenfalls analysiert worden. Hier wird das Aktivitätsverhältnis des Waschwassers (in Bq / kg) zu dem gewaschenem Pflanzenteil (in Bq / kg Frischgewicht) gebildet und in den Gruppen zusammengefasst.

Mittels U-Test nach Mann-Whitney wird zunächst herausgefunden, dass sich die Aktivitätsverhältnisse von ¹³⁴Cs von denen von ¹³¹I bei den Pflanzenproben (Gewaschen/Ungewaschen) beim Kollektiv "Spinat" hochsignifikant und beim Kollektiv "alle Gemüsearten" höchstsignifikant unterscheiden. Betrachtet man die Aktivitätsverhältnisse beim Waschwasser, werden bei beiden Kollektiven höchstsignifikante Unterschiede zwischen ¹³⁴Cs und ¹³¹I Abwaschung festgestellt. Die Aktivitätsverhältnisse selbst sind in Abb. 3.6 für Spinat und in Abb. 3.7 für alle Gemüsearten dargestellt.

Mit einem Rangverfahren werden -getrennt nach den Nukliden ¹³⁴Cs und ¹³¹I- die Mediane und Vertrauensbereiche der Aktivitätsverhältnisse bestimmt. In Tab. 3.12 finden sich die Werte für Spinat. Sowohl bei Radiojod als auch bei Radiocäsium wird statistisch signifikant eine Abnahme der Kontamination durch Waschen festgestellt. Die Abnahme beträgt etwa 10 % bei ¹³¹I und etwa 53 % bei ¹³⁴Cs. Konsistenterweise ist das Verhältnis Waschwasser / gewaschenem Gemüse für ¹³⁴Cs wesentlich höher als für ¹³¹I. Werden die Verhältnisse für alle Gemüsearten betrachtet, ist die Reduktion durch Waschen etwa 10 % (¹³¹I) bzw. etwa 44% (¹³⁴Cs) bei geringerer statistischer Unsicherheit (Tab. 3.13).

Tabelle 3.12 Verhältnis der Aktivitätskonzentration (Median mit 95% Vertrauens-
bereich) nach dem parameterfreiem Rangtest auf der Basis von 8
Wertepaaren (Spinat).

Waschversuch		¹³⁴ Cs		¹³¹			
Aktivitätsverhältnis Spinat	LS	Median	RS	LS	Median	RS	
Gewaschen/Ungewaschen	0,301	0,465	0,585	0,501	0,904	0,973	
Waschwasser/Gewaschen	0,0117	0,0136	0,0374	0,00066	0,00142	0,0024	

Tabelle 3.13 Verhältnis der Aktivitätskonzentration (Median mit 95% Vertrauens-
bereich) nach dem parameterfreiem Rangtest auf der Basis von 28
Wertepaaren (alle Gemüsearten).

Waschversuch		¹³⁴ Cs		¹³¹			
Aktivitätsverhältnis alle Gemüsearten	LS	Median	RS	LS	Median	RS	
Gewaschen/Ungewaschen	0,477	0,561	0,609	0,718	0,904	0,996	
Waschwasser/Gewaschen	0,00984	0,0138	0,0249	0,00166	0,00291	0,0042	

Abb. 3.6 Median, 25%-75% Wertebereich, Minimal- und. Maximalwert der Aktivitätsverhältnisse beim Waschen von Spinat für ¹³⁴Cs und ¹³¹I. Oben sind die Verhältnisse gewaschenes / ungewaschenes Gemüse, unten die von Waschwasser / gewaschenem Gemüse aufgetragen. Das abgelagerte ¹³¹I wird nur in geringem Maße abgewaschen, deshalb ist das Verhältnis der Pflanzenteilproben nahe 1, während beim Waschwasser das Verhältnis sehr klein ist. ¹³⁴Cs wird wesentlich besser abgewaschen, was sich ebenfalls in beiden Diagrammen widerspiegelt.

-83-

Abb. 3.7 Median, 25%-75% Wertebereich, Minimal- und. Maximalwert der Aktivitätsverhältnisse beim Waschen aller Gemüsearten für ¹³⁴Cs und ¹³¹I. Oben sind die Verhältnisse gewaschenes / ungewaschenes Gemüse, unten die von Waschwasser / gewaschenem Gemüse aufgetragen. Hier treten höhere Extremwerte auf als bei Spinat allein, der Ausreißer beim Verhältnis Waschwasser / gewaschenem Gemüse liegt bei 138 % (¹³⁴Cs).

3.3 Diskussion der Ablagerungsexperimente

Bei der Ablagerung von gasförmigem ¹³¹l₂ und partikelgebundenem ¹³⁴Cs auf mehrere Blattgemüsearten können statistisch signifikante Unterschiede festgestellt werden. Sowohl bei den Frühlingsgemüsearten (Experiment B) als auch bei den Sommergemüsearten (Experiment C und D) liegen diese Unterschiede wesentlich über der Unsicherheit (etwa 13%), die durch mögliche Inhomogenitäten in der Depositionskammer verursacht werden (Experiment E).

Betrachtet man die Aktivität A des abgelagerten Radiojods relativ zur Referenzspezies Spinat (siehe Tab. 3.7), kann für die Frühlingsgemüsearten folgende Reihung aufgestellt werden:

$$A_{\text{Spinat}}(1) > A_{\text{Pflücksalat}}(0,36) > A_{\text{Endivie}}(0,27) > A_{\text{Kopfsalat}}(0,11)$$

Das heißt, auf Blattspinat wird grob 3mal mehr ¹³¹I abgelagert als auf Pflücksalat, 4mal mehr als auf Endivie und 9mal mehr als auf Kopfsalat. Dass die Deposition auf Kopfsalat am geringsten ausfällt ist plausibel, da Kopfsalat geschlossene Köpfe ausbildet, bei dem nur die äußeren Blätter direkt exponiert sind. Für die übrigen Aktivitätsverhältnisse müssen andere Pflanzeneigenschaften verantwortlich sein. Der Blattflächenindex scheidet hier als direktes Kriterium aus, da Pflücksalat und Endivie einen etwa gleich hohen Index haben, der etwa 2,5 mal größer ist als der für Spinat (siehe Tab. 2.3). Da bekannt ist, dass Jod vermehrt über die Blattöffnungen aufgenommen wird, sind zusätzlich Dichte und Größe der Stomata auf dem Blatt zu berücksichtigen. Ob die stomatäre Leitfähigkeit das geeignete Maß ist, die Aufnahme des gasförmigen ¹³¹I zu parametrisieren, gilt es in größeren Messserien zu prüfen. Bei den stichprobenhaften Messungen vor Expositionsbeginn deutet der etwa 4mal höhere Wert bei Spinat gegenüber Pflücksalat und der etwa 5mal höhere Wert gegenüber Endiviensalat jedenfalls darauf hin (Tab. 2.5).

Für das abgelagerte Radiocäsium ergibt sich folgende Reihung der Aktivitätsverhältnisse A bei den Frühlingsgemüsearten (nach Tab. 3.7):

$$A_{\text{Spinat, Pflücksalat}}(1) > A_{\text{Endivie}}(0,58) > A_{\text{Kopfsalat}}(0,31).$$

Die Ablagerung auf Spinat und Pflücksalat unterscheidet sich nicht signifikant, auf beiden Arten wird grob doppelt so viel ¹³⁴Cs als auf Endivie und 3mal so viel als auf Kopfsalat abgelagert. Wiederum wird auf die geschlossene Form des Kopfsalates am wenigsten abgelagert. Auch bei der Partikeldeposition scheint die Blattfläche allein nicht das entscheidende Kriterium zu sein, sonst sollte sich die Ablagerung auf Pflücksalat und Endivie nicht unterscheiden. Ausrichtung, Struktur und Rauhigkeit der Blätter sind nicht zu vernachlässigende Einflussgrößen bei der Partikeldeposition.

Beim Sommergemüse können zwei Ablagerungsexperimente verglichen werden. Wieder bezogen auf Spinat ergibt sich folgende Reihung der Ablagerung bei Radiojod:

> A_{Spinat} (1)> $A_{\text{Grünkohl}}$ (0,35) > $A_{\text{Weißkohl}}$ (0,03) (Experiment C, Tab. 3.9) bzw. A_{Spinat} (1)> $A_{\text{Grünkohl}}$ (0,18) > $A_{\text{Weißkohl}}$ (0,01) (Experiment D, Tab. 3.11).

Bei beiden Experimenten ist die Reihung gleich, auf Spinat wird wiederum am meisten deponiert, grob 3mal (6mal) mehr als auf Grünkohl und 35mal (100mal) mehr als auf Weißkohl. Diese Abfolge ist verständlich, Weißkohl bildet vollkommen geschlossene Kopfe aus und nur die äußeren Blätter sind exponiert. Kohlblätter sind zudem mit einer Wachschicht überzogen, was ein Eindringen des Jodgases erschwert. Dies wird besonders bei den Grünkohldaten deutlich.

Die Unterschiede zwischen den Experimenten С und D sind durch Pflanzenparameter zu erklären. Bei gleichem Blattflächenindex (Tab. 2.3) haben die Spinatpflanzen in Experiment D ein etwa 20% kleineres Gewicht (Tab. 2.6), was die gewichtsbezogene Ablagerung auf diese Pflanzen erhöht, gleichzeitig sind die Weißkohlköpfe fast 50% schwerer, was die gewichtsbezogene Aktivität erniedrigt. Vergleichende Gewichtsdaten liegen für Grünkohl nicht vor, an der stomatären Leitfähigkeit (Tab. 2.5) sieht man jedoch, dass in Experiment D Pflanzen mit eingeschränkter Blattatmung (in Vergleich zu Experiment C) exponiert sind: Die stomatäre Leitfähigkeit der Stichproben ist etwa einen Faktor 2 kleiner. Insgesamt erscheint somit die relativ höhere Ablagerung auf Spinat in Experiment D plausibel.

Für die Radiocäsiumablagerung des Sommergemüses ist folgende Reihung gemessen worden:

 $A_{\text{Grünkohl}}(2,1) > A_{\text{Spinat}}(1) > A_{\text{Weißkohl}}(0,06)$ (Experiment C, Tab. 3.9) bzw.

 $A_{Grünkohl}$ (2,4) > A_{Spinat} (1) > $A_{Weißkohl}$ (0,03) (Experiment D, Tab. 3.11).

Die Reihung ist in beiden Experimenten gleich, am meisten wird auf Grünkohl deponiert, gut doppelt so viel wie auf Spinat und 35mal (80mal) so viel wie auf Weißkohl. Bei der Partikeldeposition sind Ausrichtung, Struktur und Rauhigkeit der Blätter entscheidend und die freistehenden, gekräuselten Blätter des Grünkohls filtern optimal die ¹³⁴Cs markierten Partikel. Auf den kompakten Köpfen des Weißkohls dagegen werden am wenigsten Partikel abgelagert.

Die Unterschiede zwischen den Experimenten C und D erklären sich auch hier aus der Variabilität der eingesetzten Pflanzen. Die Weißkohlköpfe sind fast 50% schwerer, was die gewichtsbezogene Aktivität erniedrigt, die geringen Unterschiede bei Grünkohl können schon durch verschieden starke Ausdifferenzierung und Kräuselung der Blätter bedingt sein.

Vergleicht man Gas- (¹³¹I₂) und Partikel- (¹³⁴Cs) Deposition, so fällt die Extremstellung von Spinat bei der Jodablagerung auf. Sowohl beim Frühlingsgemüse als auch beim Sommergemüse liegt die Ablagerung von gasförmigen Radiojod mindestens einen Faktor drei über der Ablagerung auf andere Blattgemüsearten. Die Aufnahme von Jod über die Blattöffnungen scheint hier besonders effektiv zu sein. Aus radiologischer Sicht muss also bei einer möglichen Exposition von Gemüse mit gasförmigen Radiojod vor allem Spinat bezüglich seiner Kontamination überwacht werden. Von der Partikelablagerung sind besonders Pflanzen mit freistehenden, stark strukturierten Blättern betroffen. Bei Frühlingsgemüse sind dies Pflücksalat und Spinat und bei Sommergemüse Grünkohl. Bei einer möglicher Exposition mit partikelgebundenen Radionukliden (¹³⁴Cs) sind also vor allem diese Pflanzen zu überwachen. Andererseits sind sowohl bei gasförmiger als auch bei partikelgebundener Radionuklidexposition Pflanzen viel weniger betroffen, die geschlossene Köpfe ausbilden wie Kopfsalat und Weißkohl.

Durch Waschen des Gemüses kann die Kontamination mit den Radionukliden reduziert werden. Die Abnahme der abgelagerten Aktivität liegt bei Radiojod allerdings nur bei etwa 10%. Das Jod scheint zu einem überwiegenden Teil nach dem Diffundieren in die Blattfläche dort fixiert zu werden. Das partikuläre ¹³⁴Cs wird durch Waschen zu etwa 45% wieder von den Pflanzen entfernt. Das in Partikeln am Blatt haftende ¹³⁴Cs ist weit weniger in der Blattfläche fixiert und kann aus den Partikeln gelöst werden oder mitsamt dem Trägerpartikel abgespült werden.

Wie in Kapitel 1.2 ausgeführt, wird bei Freilandexperimenten üblicherweise die Depositionsgeschwindigkeit v_g als Maß für die Effizienz der Ablagerung angegeben. In Kammerexperimenten mit geringer Luftbewegung sind sicher die luftseitigen Widerstände $r_a + r_s$ mit Freilandexperimenten nicht zu vergleichen. Dominiert allerdings der Transferwiderstand r_t (der die Blattaufnahme charakterisiert) die gesamte Deposition, macht die Angabe einer Depositionsgeschwindigkeit auch bei Kammerexperimenten Sinn. Ausgehend von der Definition von v_g (Gl. 1.1), kann für eine Ablagerung über einen Zeitraum T die Depositionsgeschwindigkeit v_g als das Verhältnis der auf dem Bewuchs deponierten Aktivität A_{dep} pro Einheitsfläche zu dem zeitlichen Integral der Luftkonzentration c_{Luft} in einer Referenzhöhe angegeben werden:

$$v_g = A_{dep} / (\int c_{Luft} dt) \qquad [m / s] \qquad (3.1).$$

Um in dem massebezogenem System zu bleiben, ist in Tabelle 3.14 die Depositionsgewindigkeit normiert mit der Bewuchsdichte D (Tab. 2.7) wiedergegeben:

$$v_D = v_g / D$$
 [m³ / (g × s)]. (3.2).

Tabelle 3.14 Normierte Depositionsgeschwindigkeit v_D für die Experimente B - E bei Exposition mit gasförmigem ¹³¹I und partikelgebundenem ¹³⁴Cs.

Experiment	Spezies	v _D (¹³¹ I)	v _D (¹³⁴ Cs)
		[cm ³ / (g × s)]	[cm ³ / (g × s)]
В	Endivie	0,14	0,043
	Kopfsalat	0,059	0,022
	Pflücksalat	0,21	0,074
	Spinat	0,51	0,071
С	Grünkohl	0,31	0,092
	Weißkohl	0,023	0,003
	Spinat	0,86	0,044
D	Grünkohl	0,15	0,074
	Weißkohl	0,009	0,001
	Spinat	0,86	0,029
E	Filter "Endivie"	2,31	0,33
	Filter "Kopfsalat"	2,24	0,35
	Filter "Pflücksalat"	2,18	0,38
	Filter "Spinat"	2,08	0,34

Die Verhältnisse der normierten Depositionsgeschwindigkeit v_D eines Nuklids entsprechen den oben diskutieren Aktivitätsverhältnissen der abgelagerten Nuklide. Vergleicht man v_D der beiden Tracernuklide, so liegt der Wert für das gasförmige Jod immer höher, im Mittel um einen Faktor 9 bei der Ablagerung auf Gemüse. Allerdings ist die Deposition auf Spinat besonders effektiv, während bei Grünkohl, Endivie, Kopfsalat und Pflücksalat nur eine 3fach erhöhte Deposition von Radiojod gemessen wird. Im Vergleich der Experimente C und D bei der Partikeldeposition (¹³⁴Cs) findet man höhere Werte für v_D bei Experiment C, was mit dem größerem Partikeldurchmesser (siehe Tab. 2.12) erklärt werden kann. Oberschachtsiek et al. (1993) geben das Minimum der trockenen Ablagerung bei etwa 0,6 µm Partikeldurchmesser an mit einem Anstieg zu größeren Partikeln. Wegen der geringen Zunahme von v_D kann der Effekt allerdings in dem gemessenem Größenbereich nicht wesentlich sein. Im Vergleich mit anderen Kammerexperimenten kann sehr gute Übereinstimmung feststellt werden mit Messungen an Spinat von Nakamura & Ohmomo (1980). Sie finden bei ihren Versuchen bei der Blattaufnahme von elementarem Jod durch Spinat $v_D = 0.93 \pm 0.15 \text{ cm}^3 / (g \times s)$. Lee et al. (2003) haben bei dem Transfer von Jod auf Chinakohl Einzelwerte von $v_D = 0.98 - 4.0 \text{ cm}^3 / (g \times s)$ gemessen, was etwas höher liegt, wie die Werte dieser Studie. Allerdings betrachten sie Einzelpflanzen einer andere Spezies.

4 Literaturverzeichnis

- Adams, D.R., Voillequé, P.G.: Effect of stomatal opening on the transfer of ¹³¹I₂ from air to grass. Health Physics 21, 771-775 (1971).
- Barry, P.J., Chamberlain, A.C.: Deposition of iodine onto plant leaves from air. Health Physics 9, 1149-1157 (1963).
- Berner, A., Lürzer, C.: Mass Size Distributions of Traffic Aerosol at Vienna. J Phys Chem 84, 2079-2083 (1980).
- Biryukov,S.: An experimental study of the dry deposition mechanism for airborne dust. Journal of Aerosol Science, Volume 29, 129-139 (1998).
- Butler, E.C.V., Smith, J.D.: Influence of phytoplankton on iodine speciation in sea water. Oceanogr Mar Bio 26, 382-386 (1986).
- Buzorius, G., Rannik, Ü., Nilsson, E.D., Vesala, T., Kulmala, M.: Analysis of measurement techniques to determine dry deposition velocities of aerosol particles with diameters less than 100 nm. Journal of Aerosol Science 34, 747-764 (2003).
- Cline, J.F., Wilsen, D.O.: Hungate, F.P.: Effect of physical and biological conditions deposition and retention of ¹³¹I on plants. Health Physics 11, 713-717 (1965).
- Casnati, A., Pochini, A., Ungano, R., Ugozzoli, F., Arnaud, F., Fanni, S., Schwing, M.J., Egberink, R.J.M., de Jong, F., Reinhoudt, D. N.: Synthesis, Complexation, and Membrane Transport Studies of 1,3-Alternate Calix[4]arene-crown-6 Conformers: A New Class of Cesium Selective Ionophores. Journal American Chemical Society 117, 2767-2777 (1995).
- Chamberlain, A.C.: The movement of particles in plant communities. In: Vegetation and the Atmosphere (Ed.: J.L. Monteith) Academic Press, London, 155-203 (1975).
- Dailey, M., Wender, I., Abrams, R. Metallurgical Laboratory, University of Chicago, CH-2777 or MDDC-251, 1945.
- Fowler, D.: Transfer to terrestrial surfaces. Phil. Trans. R. Soc. Lond. B 305, 281-297 (1984).

- Fowler, D., Unsworth, M.H.: Turbulent transfer of sulfur dioxide to a wheat crop. Q. Jl. R. met. Soc 105, 767-784 (1979).
- Heineman, K., Vogt, K.: Measurements of the deposition of iodine onto vegetation and of the biological half-life of iodine on vegetation. Health Physics 39, 463-474 (1980).
- Hungate, F.P., Cline, J.F., Uhler, R.L.: Foliar sorption of ¹³¹I by plants. Health Physics 9, 1159 1166 (1963).
- Jonas, R., Heinemann, K.: Studies on the dry deposition of aerosol particles on vegetation and plane surfaces. Journal of Aerosol Science 16, 463-471 (1985).
- Jonas, R., Heinemann, K.: Field experiments for studying the deposition of aerosols onto vegetation and other surfaces. Journal of Aerosol Science 17, 376-381 (1986).
- Keronen. P., Hillamo, R. : Estimation of dry deposition velocity of particles on the basis of measured size distributions. Journal of Aerosol Science 21, S205-S208 (1990).
- Kim, E., Kalman, D., Larson, T.: Dry deposition of large, airborne particles onto a surrogate surface. Atmospheric Environment, 2387-2397 (2000).
- Lee, H., Choi, H.J., Kang, H.S., Yu,D., Ling, K.Mo, Choi,J.H., Lee,C.W.: The transfer of lodine deposited onto the Chinese cabbage. In: International Conference on Isotopic and Nuclear Analytical Techniques for Health and Environment. Vienna, Austria (2003).
- Lestari, P., Oskouie, A.K., Noll K.E.: Size distribution and dry deposition of particulate mass, sulfate and nitrate in an urban area. Atmospheric Environment 37, 2507-2516 (2003).
- Masmoudi, M.v Belghith, I., Chaabane, M.: Elemental particle size distributions. measured and estimated dry deposition in Sfax region (Tunisia). Atmospheric Research 63, 209-219 (2002).
- McMahon, T.A., Denison, P.J.: Empirical atmospheric deposition parameters a survey. Atmospheric Environment 13, 571-585 (1979).
- McMurry, P.H.: A review of atmospheric aerosol measurements. Atmospheric Environment 34, 1959-1999 (2000).

- Monte, L.: Evaluation of the environmental transfer parameters for ¹³¹I and ¹³⁷Cs using the contamination produced by the Chernobyl accident at a site in central Italy. Journal of Environmental Radioactivity 12, 13–22 (1990).
- Müller, H., Pröhl, G.: Ecosys- 87: A dynamic model for assessing radiological consequences of nuclear accidents. Health Physics 64, 232–252 (1993).
- Muramatsu, M., Uchida, S., Sumiya, M, Ohmomo, Y.: Deposition velocity of gaseous organic iodine from the atmosphere to rice plants. Health Physics 71, 757-762 (1996).
- Nakamura, Y., Ohmomo, Y.: Factors used for the estimation of gaseous radioactive iodine intake through vegetation–I. Uptake of methyliodide by spinach leaves. Health Physics 38, 307-314 (1980a).
- Nakamura, Y., Ohmomo, Y.: Factors used for the estimation of gaseous radioactive iodine intake through vegetation–II. Uptake of elemental iodine by spinach leaves. Health Physics 38, 315-320 (1980b).
- Nakamura, Y.,Ohmomo, Y.:Transfer of gaseous iodine to Tradescantia. Journ. Radiat. Res 25, 251-259 (1984).
- Nicholson, K.W.: The dry deposition of small particles: a review of experimental measurements. Atmospheric Environment 22, 2653-2666 (1988).
- Noll, K.E., Khalili, E.: Dry deposition of sulfate associated with pollen. Atmospheric Environment 22, 601 –604 (1967).
- Oberschachtsiek, D., Sparmacher, H., Kreh, R., Adam, M., Fülber, K., Stegger, J., Bonka, H.: Ablagerung von partikelgebundenen Radionukliden bei trockenem Wetter, Nebel, Regen und Schneefall. Schriftenreihe Reaktorsicherheit und Strahlenschutz (Hrsg.: Der Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit) BMU-1993-356 (1993).
- Ould-Dada, Zitouni: Dry deposition profile of small particles within a model spruce canopy. The Science of The Total Environment 286, 83 96 (2002).
- Peters, K., Eiden, R.: Modelling the dry deposition velocity of aerosol particles to a spruce forest. Atmospheric Environment. Part A 26, 2555-2564 (1992).
- Pryor, S. C., Barthelmie, R.J.: Particle Dry Deposition to Water Surfaces: Processes and Consequences. Marine Pollution Bulletin 41, 220-231 (2000).

- Quinn, T.L., Ondov, J.M.: Influence of temporal changes in relative humidity on dry deposition velocities and fluxes of aerosol particles bearing trace elements. Atmospheric Environment 32, 3467-3479 (1998).
- Ruckerbauer, F., Dietl, F., Winkler, R.: Das zentrale Gammaspektrometrie-Labor des GSF-Instituts für Strahlenschutz. GSF-Bericht 5/97 (1997).
- Sachs, L.: Angewandte Statistik. Springer Verlag, Berlin, 10. Auflage (2002).
- Seung-Muk, Y., Usama Shahin, Jakkris Sivadechathep, Sofuoglu, Sait C. Holsen Thomas M.: Overall elemental dry deposition velocities measured around Lake Michigan. Atmospheric Environment 35, 1133-1140 (2001).
- Sievering, H.: The dry deposition of small particles: A review of experimental measurement. Atmospheric Environment 23, 2863-2864 (1989).
- Statistisches Jahrbuch für die Bundesrepublik Deutschland 2002. Statistisches Bundesamt Deutschland, ISBN 3-8246-0657-7 (2002).
- Steen, B.: Dry deposition of 4-50 μm dolomite particles on vegetation, flat surfaces and deposition gauges. Atmospheric Environment 20, 1597-1604 (1986).
- Thom, A.S: Momentum, mass and heat exchange of plant communities. In: Vegetation and the Atmosphere (Ed.: J.L. Monteith) Academic Press, London (1975).
- Tschiersch, J., Georgi, B.: Chernobyl fallout size distribution in urban areas. J. Aerosol Sci. 18, 689-692 (1987).
- Uchida, S., Sumiya, M., Muramatsu,Y., Ohmomo,Y., Yamaguchi,S., Obata,H. Umebayashi, M. : Deposition velocity of gaseous I to rice grains. Health Physics 55, 779 -782 (1988).
- Underwood, B.: Review of deposition velocity and washout coefficient. AEA Technology, Harwell (2001).
- Voillequé, P.G., Keller, J.H.: Air-to-vegetation transport of 131I as hypoiodous acid (HOI). Health Physics 40, 91-94 (1981).
- Watterson, J.D., Nicholson, K.W.: Dry deposition and interception of 4-22 μm diameter particles to a lettuce crop. Journal of Aerosol Science 27, 759-767 (1996).

- Wedding, J.B., Carlson. R.W., Stukel, J.J., Bazzaz, F.A.: Aerosol deposition on plant leaves. Environmental Science & Technology 9, 151-153 (1975).
- Wesely, M.L., Hicks, B.B.: A review of the current status of knowledge on dry deposition. Atmospheric Environment 34, 2261-2282 (2000).
- von Willert, D.J., Matyssek, R., Herppich, W. : Experimentelle Pflanzenökologie. Georg Thieme Verlag Stuttgart- New York (1995).
- Witherspoon, J.P., Taylor, F.G. jr.: Interception and retention of a simulated fallout by agricultural plants. Health Physics 19, 493-499 (1970).
- Whitehead, D.C.: The distribution and transformations of iodine in the environment. Environment International 10, 321-339 (1984).

Anhang

Filter	Start	Stop	Volumen	J₂-131	Jp-131	Jo-131	1-Sigma	J ₂ -131	Jp-131	Jo-131
	[t]	[t]	[I]	_ [Bq]	[Bq]	[Bq]	[%]	_ [Bq/m3]	[Bq/m3]	[Bq/m3]
Α										
07.06.02										
24-GFI2A-CT	13:50	14:20	782	92,07			0,62	117,74		
25-GFPA-CT			782		55,85		0,36		71,42	
26-ACA-CT			782			59,88	0,44			76,57
27-GFI2A-CTBACK			782	5,50			2,71	7,04		
24+27			782	97,57				124,77		
	12.20	14.55	2490	25.02			1 07	10.44		
29-GFIZA-CTF	13.20	14.55	2409	25,92	0.00		1,27	10,41	0.40	
30-GFFA- CTF			2409		0,99	23.00	0.60		0,40	0.28
31-GEI2A-CTBACKE			2409	3 26		23,09	3.62	1 31		9,20
29+31			2489	29.18			0,02	11 72		
20.01			2100	20,10				,, . 2		
В										
05.07.02										
43-GFI2-CTB	13:00	16:30	4664	221,80			0,64	47,56		
44-GFP-CTB			4664		3.36		5.33		0.72	
45-AC-CTB			4664		-,	52,86	1,46		- ,	11,33
46-GFI2BACK-CTB			4664	1,21			8.83	0,26		
43+46			4664	223.01				47 81		
50-GFI2-CTBM	17:35	18:00	632	10,52			2,72	16,65		
51-GFP-CTBM			632				n.d.	, i		
52-AC-CTBM			632			2,40	7,33			3,79
53-GFI2BACK-CTBM			632	0,55			14,74	0,87		,
50+53			632	11,07				17,52		
06.07.02										
54-GFI2-CTBF	14:20	14:52	865	1,21			10,07	1,40		
55-GFP-CTBF			865				n d	,		
56-AC-CTBF			865				n.d.			
57-GFI2BACK-CTBF			865	0,15			50,52	0,18		
54+57			865	1,36			•	1,58		

Tabelle A1 Ergebnisse der Jodfiltermessungen

Filter	Start	Stop	Volumen	J ₂ -131	Jp-131	Jo-131	1-Sigma	J ₂ -131	Jp-131	Jo-131
	[t]	[t]	[I]	[Bq]	[Bq]	[Bq]	[%]	[Bq/m3]	[Bq/m3]	[Bq/m3]
С										
02.08.02										
58-GFI2-CTC	13:28	14:58	2417	251,1			0,57	103,89		
59-GFP-CTC			2417		11,11		2,52		4,60	
60-AC-CTC			2417			62,1	1,12			25,69
61-GFI2BACK-CTC			2417	84,49			0,99	34,96		
58+61			2417	335,59				138,85		
62-GFI2-CTCM	15:17	16:30	1932	85,5			0,98	44,25		
63-GFP-CTCM			1932		0,6925		11,9		0,36	
64-AC-CTCM			1932			36,13	1,47			18,70
65-GFI2BACK-CTCM			1932	3,744			5,17	1,94		
62+65			1932	89,244				46,19		
D										
24.08.02										
73-GFI2-CTD	12:40	14:07	2165	298,6			0,45	137,92		
74-GFP-CTD			2165		18,33		1,35		8,47	
75-AC-CTD			2165			78,3	1,19			36,17
76-GFI2BACK-CTD			2165	7,59			3,27	3,51		
73+76			2165	306,19				141,43		
77-GFI2-CTDM	14:15	16:50	4047	199,3			0,55	49,25		
78-GFP-CTDM			4047		3,23		3,98		0,80	
79-AC-CTDM			4047			121,7	0,94			30,07
80-GFI2BACK-CTDM			4047	12,46			2,29	3,08		
77+80			4047	211,76				52,33		
E										
13.09.02										
89-GFI2-CTE	16:50	18:20	2390	555,5			0,37	232,43		
90-GFP-CTE			2390		57,76		1,16		24,17	
91-AC-CTE			2390			68,42	1,29			28,63
92-GFI2BACK-CTE			2390	100,8			0,86	42,18		
89+92			2390	656,3				274,60		
93-GFI2-CTEM	18:34	20:35	3153	350			0,48	111,01		
94-GFP-CTEM			3153		9,388		2,96		2,98	
95-AC-CTEM			3153			85,65	1,14			27,16
96-GFI2BACK-CTEM			3153	5,753			3,95	1,82		
93+96			3153	355,75				112,83		

Tabelle A1 Fortsetzung: Ergebnisse der Jodfiltermessungen

Filter	Cs-134	1-sigma	Cs-134	J-131	1-sigma	J-131
	[Bq/Filter]	[%]	[Bq/m3]	[Bq/Filter]	[%]	[Bq/m3]
07.06.02						
AX01	220,6	1,08	345,04	17,31	15,49	22,19
AX02	344,2	1,23	517,15	15,02	25,93	18,50
AX03	219,4	1,28	248,30	11,01	19,5	10,21
AX04	61,77	1,15	53,14	4,02	20,46	2,83
AX05	0,36	2,73	0,93	0,527	5,76	1,12
05.07.02						
BY01	82,77	0,13	225,90	0,12	39	0,27
BY02	198	0,66	274,50	<2.1		<nwg< td=""></nwg<>
BY03	77,29	1,05	20,82	<1.2		<nwg< td=""></nwg<>
BY04	0,198	7,04	0,13	<0.07		<nwg< td=""></nwg<>
02.08.02						
CU01	88,46	0.63	176,92	<nwg< td=""><td></td><td><nwg< td=""></nwg<></td></nwg<>		<nwg< td=""></nwg<>
CU02	101,4	0,76	163,85	<nwg< td=""><td></td><td><nwg< td=""></nwg<></td></nwg<>		<nwg< td=""></nwg<>
CU03	71,67	0,73	77,90	1,6	16	1,39
CU04	11,01	2,03	7,92	0,34	35	0,20
CU05	0,14	41	0,13	<nwg< td=""><td></td><td><nwg< td=""></nwg<></td></nwg<>		<nwg< td=""></nwg<>
CU06	<nwg< td=""><td></td><td>0,00</td><td><nwg< td=""><td></td><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>		0,00	<nwg< td=""><td></td><td><nwg< td=""></nwg<></td></nwg<>		<nwg< td=""></nwg<>
24.08.02						
DW01	320,9	0,48	558,67	<2,8		<nwg< td=""></nwg<>
DW02	351,7	0,49	621,85	<2,8		<nwg< td=""></nwg<>
DW03	269,8	0,53	306,59	2,9	35	2,64
DW04	27,54	1,13	28,86	<0,6		<nwg< td=""></nwg<>
DW05	0,23	15	0,39	<0,2		<nwg< td=""></nwg<>
13.09.02						
EV01	150,5	0,76	238,76	1,9	27	2,47
EV02	209,5	0,65	235,35	2,7	21	2,49
EV03	71,19	1,08	39,90	1,8	20	0,83
EV04	1,795	7,84	1,31	0,94	18	0,56

 Tabelle A2
 Ergebnisse der Partikelfiltermessungen

Experiment A	I-131	Cs-134	Α	I-131	Cs-134
07.06.02	(Bq/kg)	(Bq/kg)	07.06.02	(Bq/kg)	(Bq/kg)
Endivie			Kopfsalat		
AEU1	11204	354,7	AKU1	6037	304,6
AEU2	4429	219,2	AKU2	5803	305,3
AEU3	10373	350,4	AKU3	4277	275,3
AEU4	3156	210,2	AKU4	5943	311,9
AEU5	4184	264,2	AKU5	3596	244,0
AEU6	6244	343,2	AKU6	1504	170,8
AEU7	2695	297,0	AKU7	3722	175,6
AEU8	3496	275,8	AKU8	3513	351,2
AEU9	8204	378,3	AKU9		
AEU10	5105	204,3	AKU10	5302	250,2
AEU11	4847	243,0	AKU11	2088	174,4
AEU12	5928	200,8	AKU12	1618	175,1
AEU13	9020	328,5	AKU13	5955	253,7
AEU14	12607	293,1	AKU14	3090	303,5
AEU15	10464	245,7	AKU15	1990	173,8
AEU16	15039	325,8	AKU16	9105	307,7
AEU17	11978	148,8	AKU17	6336	251,7
AEU18	18402	290,0	AKU18		
AEU19	26788	337,3			
AEU20	15622	301,1			
AEU22(AKU9)	4056	292,6			
AEU(AKU18)	9123	326,6			
gewaschen:			gewaschen:		
AEG5	4589	159,7	AKG6	3220	191,3
AEG14	7164	178,6	AKG14	4895	148,3
Waschwasser:			Waschwasse	er:	
AEW5	8,064	1,143	AKW6	11,8	1,760
AEW14	11,914	1,236	AKW14	17,4	2,002

Tabelle A3 Ergebnisse der Blattgemüsemessungen

Experiment A	I-131	Cs-134	Α	I-131	Cs-134
07.06.02	(Bq/kg)	(Bq/kg)	07.06.02	(Bq/kg)	(Bq/kg)
Pflücksalat			Spinat		
APU1	4130	415,1	ASU1	14959	276,2
APU2	6696	448,5	ASU2	8410	266,4
APU3	4659	408,7	ASU3	8263	246,2
APU4	4009	449,9	ASU4	11248	278,6
APU5	8877	572,0	ASU5	10197	373,5
APU6	5256	493,3	ASU6	9900	256,9
APU7	6272	500,7	ASU7	17750	291,5
APU8	5952	371,3	ASU8	13299	229,2
APU9	9506	910,8	ASU9	11387	265,8
APU10	23857	281,0	ASU10	43966	323,7
APU11	41345	594,5	ASU11	19696	290,1
APU12	40959	466,4	ASU12	25298	305,9
APU13	18217	469,7	ASU13	59100	386,5
APU14	37119	571,6	ASU14	35701	286,9
APU15			ASU15	30361	296,0
APU16	30194	563,3	ASU16	43329	273,3
APU17	46782	542,9	ASU17	38398	310,4
APU18	45648	552,0	ASU18	38743	342,6
APU19	44129	644,2	ASU19	45047	387,8
APU20	22504	549,2	ASU20	49051	366,3
aowaaaban			aowaaaba		
gewaschen:	7420	209 7	gewaschei	I. 5440	126.0
APG3	7139	398,7	ASGS	5110	120,9
AFG14	39221	343,4	A3G14	2,1201	130,9
Waschwasser:			Waschwas	ser:	
APW3	12,6	2,156	ASW5	12,2	1,591
APW14	55,2	2,660	ASW14	76,8	1,918

 Tabelle A3
 Fortsetzung: Ergebnisse der Blattgemüsemessungen

Experiment B	I-131	Cs-134	В	I-131	Cs-134
05.07.02	(Bq/kg)	(Bq/kg)	05.07.02	(Bq/kg)	(Bq/kq)
Endivie	· · · · · ·	· · · · ·	Kopfsalat		(1 J)
BEU1	457,8	262,7	BKU1	113,2	85,5
BEU2	408,4	241,9	BKU2	161,2	151,6
BEU3	333,5	162,5	BKU3	97,0	89,1
BEU4	161,1	130,2	BKU4	63,8	47,6
BEU5	199,0	170,0	BKU5	99,6	93,0
BEU6	336,6	159,7	BKU6	55,9	45,7
BEU7	130,4	108,6	BKU7	89,6	59,5
BEU8	161,3	119,5	BKU8	62,4	51,3
BEU9	236,9	128,7	BKU9	34,1	30,3
BEU10	148,0	81,3	BKU10	60,3	58,2
BEU11	130,1	95,1	BKU11	92,1	67,1
BEU12	158,6	120,3	BKU12	111,0	77,5
BEU13	304,6	112,2	BKU13	68,1	65,8
BEU14	174,6	104,3	BKU14	94,8	70,9
BEU15	83,6	66,4	BKU15	109,0	77,9
BEU16	485,3	146,5	BKU16	73,3	56,4
BEU17	243,1	112,1	BKU17	105,7	67,3
BEU18	295,1	129,9	BKU18	135,0	89,4
BEU19	792,4	248,0	BKU19	221,9	94,3
			BKU20	113,1	65,1
gewaschen:			gewaschen:		
BEG5	120,2	78,5	BKG5	76,1	63,8
BEG14	112,5	55,4	BKG11	41,8	27,6
Waschwasser:			Waschwasse	er:	
BEW5	0,5	0,5	BKW5	0,3	0,9
BEW14	0,4	0,5	BKW11	0,5	0,9

 Tabelle A3
 Fortsetzung: Ergebnisse der Blattgemüsemessungen

Nachweisgrenze

Exporimont P	1 1 2 1	Co 124	D	1 1 2 1	Co 124
	1-131 (Ba/ka)	(Balka)		1-131 (Ba/ka)	05-134 (Balka)
UJ.U/.UZ	(Þq/kg)	(Þq/kg)	UJ.U/.UZ Spinat	(Dy/Kg)	(Þq/kg)
PILUCKSalat	450.4	202.0	Spinat	700	207.0
BPU1	152,1	202,0	BSU1	788	207,6
BPU2	231,9	230,3	BSU2	580	193,6
BPU3	57,4	68,8	BSU3	463	204,3
BPU4	176,0	201,0	BSU4	736	215,2
BPU5	215,7	266,7	BSU5	585	207,0
BPU6	280,2	284,6	BSU6	689	248,9
BPU7	196,1	217,0	BSU7	729	216,5
BPU8	247,2	242,1	BSU8	571	206,2
BPU9	207,8	220,8	BSU9	659	212,3
BPU10	493,8	233,8	BSU10	898	204,1
BPU11	386,0	222,3	BSU11	831	220,1
BPU12	375,7	210,6	BSU12	919	221,6
BPU13	439,2	238,9	BSU13	999	196,2
BPU14	336,1	187,7	BSU14	852	205,2
BPU15	361,9	207,3	BSU15	1409	283,3
BPU16	402,5	214,1	BSU16	1185	232,2
BPU17	463,6	235,5	BSU17	1191	200,4
BPU18	506,8	250,4	BSU18	1321	276,1
BPU19	533,6	226,1	BSU19	1622	247,2
	,	,	BSU20	1278	257,4
					ŕ
gewaschen:			gewaschen:		
BPG5	278,6	172,0	BSG5	413	81,7
BPG14	158,1	121,6	BSG14	795	61,8
	,	,			,
Waschwasser:			Waschwasser:		
BPW5	0,398	1,251	BSW5	0,30	1,1
BPW14	0,542	0,797	BSW14	1,89	2,3
	· · ·	<i>.</i>			

 Tabelle A3
 Fortsetzung: Ergebnisse der Blattgemüsemessungen

Extrapoliert aus Nachmessung

Nachweisgrenze

Experiment C	I-131	Cs-134	С	I-131	Cs-134	С	I-131	Cs-134
02.08.02	(Bq/kg)	(Bq/kg)	02.08.02	(Bq/kg)	(Bq/kg)	02.08.02	(Bq/kg)	(Bq/kg)
Grünkohl		(i c /	Weißkohl	,	(i c /	Spinat		
CGU 1 DU	348	176,0	CWU 1 CP6	54,6	10,32	CSU1 CAN	1029	92,9
CGU 2 CAN	518	211,5	CWU 2 CAN	19,0	4,18	CSU2 CAN	1041	86,6
CGU 3 GEM	336	148,8	CWU 3 CP5	73,0	13,37	CSU3 CP5	907	94,7
CGU 4 CP5	188	105,4	CWU 4 GEM	23,0	4,96	CSU4 CP6	1141	84,8
CGU 5 CP6	330	124,9	CWU 5 CAN	40,4	5,50	CSU5 CAN	1092	78,7
CGU 6 DU	682	162,4	CWU 6 CP5	28,3	5,22	CSU6 DU	897	74,3
CGU 7 GEM	542	168,7	CWU 7 DU	26,6	3,29	CSU7 GEM	1419	96,2
CGU 8 CAN	619	184,1	CWU 8 CAN	18,8	3,14	CSU8 CP6	1314	82,3
CGU 9 CP6	616	208,8	CWU 9 GEM	53,1	6,15	CSU9 CP6	1136	82,0
CGU 10 CP5	429	185,4	CWU 10 CP5	55,0	9,53	CSU10 DU	1358	83,0
CGU 11 CP6	367	214,0	CWU 11 GEM	29,2	3,57	CSU11 GEM	1612	82,7
CGU 12 DU	495	246,2	CWU 12 CAN	25,2	2,44	CSU12 DU	1865	95,7
CGU 13 DU	590	192,6	CWU 13 CP6	38,9	6,52	CSU13 CAN	1574	88,6
CGU 14 CP5	617	230,6	CWU 14 CP5	123,4	9,81	CSU14 CP5	1826	87,7
			CWU 15 CP6	34,3	4,97	CSU15 CP5	2253	112,7
			CWU 16 DU	44,6	5,49	CSU16 GEM	1620	99,5
			CWU 17 GEM	30,5	4,80	CSU17 CAN	1748	105,7
			CWU 18 DU	78,3	9,09	CSU18 GEM	2235	138,8
gewaschen:			gewaschen:			gewaschen:		
ČGU 6 CAN	547	88.9	CWG5 GEM	38.9	4.39	ČSG 9 CP6	922	37.1
CGG 10 CAN	308	79,7	CWG16 DU	16,4	1,59	CSG 13 CP5	1531	45,2
Waschwasser:			Waschwasser	:		Waschwasser	:	
CGW 6 GEM	0,6	1,8	CWW5 GEM	0,3	0,18	CSW 9 DU	1,0	0,4
CGW 10 GEM	2.4	2.0	CWW12 DU	0.2	0.22	CSW 13 CAN	2.4	0.7

Tabelle A3 Fortsetzung: Ergebnisse der Blattgemüsemessungen

Experiment D	I-131	Cs-134	D	I-131	Cs-134	D	I-131	Cs-134
24.08.02	(Bq/kg)	(Bq/kg)	24.08.02	(Bq/kg)	(Bq/kg)	24.08.02	(Bq/kg)	(Bq/kg)
Grünkohl		,	Weißkohl		,	Spinat		
DGU 1 GEM	322,4	529,0	DWU 1 CAN	11,94	7,38	DSU1 CP6	2037	314,3
DGU 2 GEM	618,4	661,2	DWU 2 DU	11,15	5,32	DSU2 DU	2236	360,8
DGU 3 DU	230,5	404,4	DWU 3 DU	16,96	6,10	DSU3 DU	2272	344,4
DGU 4 CAN	367,5	467,6	DWU 4 GEM	56,84	17,27	DSU4 DU	2101	265,4
DGU 5 CP6	306,1	422,5	DWU 5 CP6	7,12	2,71	DSU5 GMX	1783	277,4
DGU 6 GMX	314,6	577,3	DWU 6 CAN	21,68	8,47	DSU6 GMX	1888	251,5
DGU 7 CP6	461,2	707,1	DWU 7 GEM	18,64	3,41	DSU7 CAN	1851	221,4
DGU 8			DWU 8 GMX	48,49	15,69	DSU8 CAN	1664	243,0
DGU 9 CAN	348,8	512,7	DWU 9 CAN	7,81	3,26	DSU9 DU	1683	218,3
DGU 10 GEM	336,3	630,8	DWU 10			DSU10 GMX	1742	225,5
DGU 11 CP6	298,2	713,4	DWU 11 GMX	26,19	8,64	DSU11 CAN	1605	203,5
DGU 12 DU	325,4	634,6	DWU 12 CP6	8,36	1,54	DSU12 DU	1903	226,1
DGU 13	481,2	639,8	DWU 13 CAN	38,66	9,87	DSU13 CP6	1847	196,1
DGU 14 CAN	395,3	734,6	DWU 14 GEM	51,23	10,04	DSU14 DU	1781	169,8
			DWU 15 GMX	19,97	6,93	DSU15 GEM	2134	271,1
			DWU 16 GEM	0,83	1,15	DSU16 GMX	1984	211,1
			DWU 17 GMX	85,67	15,00	DSU17 CP6	2413	279,9
			DWU 18 GEM	15,33	6,16	DSU18 GMX	3055	342,3
gewaschen:			gewaschen:			gewaschen:		
DGG 3 CAN	229.6	208.2	DWG5 DU	5.43	1.92	DSG 5 DU	1624	159.8
DGG 10 CAN	360,2	363,0	DWG18 CP6	22,32	4,30	DSG 14 GEM	1710	99,4
Waschwasser:			Waschwasser			Waschwasser		
DGW 3 CP1	2,06	19,57	DWW5 GEM	0,53	0,19	DSW 5 CN3	1,08	2,10
DGW 10 CP2	1.98	11.41	DWW18 CAN	0.97	5.95	DSW 14 CN4	2.17	2.02

Tabelle A3 Fortsetzung: Ergebnisse der Blattgemüsemessungen

Experiment E	I-131	Cs-134	E	I-131	Cs-134
13.09.02	(Bq/kg)	(Bq/kg)	13.09.02	(Bq/kg)	(Bq/kg)
"Endivie"			"Kopfsalat"		
EEF1 GMX	5928	1538	EKF1 CP5	8209	1851
EEF2 CP6	8952	1925	EKF2 CP6	8177	1499
EEF3 DU	11243	1347	EKF3 GMX	7342	1606
EEF4 CP6	5620	1172	EKF4 CP6	6026	1507
EEF5 DU	5579	1049	EKF5 CAN	6232	1175
EEF6 CP5	9114	1523	EKF6 GMX	6180	1333
EEF7 GEM	6637	1380	EKF7 DU	5703	1312
EEF8 GMX	6164	1386	EKF8 GEM	5732	1345
EEF9 DU	6656	1381	EKF9 CP5	5552	1216
EEF10 CP6	7323	1349	EKF10 CP5	7245	1296
EEF11 CP5	7931	1257	EKF11 CP5	7416	1478
EEF12 GEM	8987	1411	EKF12 CP6	6968	2134
EEF13 GEM	8459	1912	EKF13 CAN	8559	1749
EEF14 DU	8747	1646	EKF14 GMX	7329	1854
EEF15 GMX	9670	1655	EKF15 DU	8128	2097
EEF16 GMX	6421	1393	EKF16 CP5	6063	1198
EEF17 CP5	7079	1557	EKF17 DU	5795	1294
EEF18 DU	5676	1629	EKF18 GMX	6970	2059
EEF19 GEM	6271	2002			
EEF20 GEM	6530	1952			
			_		
Experiment E	I-131	Cs-134	E	I-131	Cs-134
13.09.02	(Bd/kg)	(Bq/kg)	13.09.02	(Bq/kg)	(Bd/kg)
"Pflucksalat"	7050	4700	"Spinat"		4000
EPF1 CP5	7252	1763	ESF1 GEM	6806	1669
EPF2 GEM	6030	1318	ESF2 CP6	5692	1130
EPF3 DU	6690	1633	ESF3 GMX	6408	1308
	9527	1825		7180	1634
	8860	1771	ESF5 CAN	8336	14/4
EPF6 CAN	7486	1559	ESF6 GEM	8077	1629
EPF/GEM	7915	1457	ESF7 DU	6862	1181
EPF8 CAN	/315	1523	ESF8 DU	61/1	986
EPF9 GEM	5/13	1650	ESF9 CP5	8193	1339
EPF10 CAN	6065	1452	ESF10 DU	5516	1100
	6311	1431	ESF11 CAN	63/8	1349
EPF12 GEM	/355	1491	ESF12 CP6	7251	1698
EPF13 GMX	6810	1856	ESF13 CP6	6628	1451
EPF14 CP6	8254	2050	ESF14 CAN	6542	1468
EPF15 CAN	6/31	1/63		6829	1646
EPF16 GEM	6123	1881	ESF16 GEM	4990	1235
	6203	1620	ESF1/GEM	5/19	1557
	5933	1497	ESF18 GEM	6339	1204
EPF19 DU	5277	1628	ESF19 GEM	5268	1704

EPF20 CAN

6835

2312

ESF20 GMX

5454

1574

Tabelle A4 Ergebnisse der Homogenitätsmessung